A driving-cycle predictive control approach for energy consumption optimization of hybrid electric vehicle

Author(s):  
Bingjiao Liu ◽  
Qin Shi ◽  
Zejia He ◽  
Yujiang Wei ◽  
Duoyang Qiu ◽  
...  

This paper proposes an adaptive control strategy of fuel consumption optimization for hybrid electric vehicles (HEVs). The strategy combines a moving-horizon-based nonlinear autoregressive (NAR) algorithm, a backpropagation (BP) neural network algorithm, and an equivalent consumption minimization strategy (ECMS) method to reduce energy consumption. The moving-horizon-based NAR algorithm is applied to predict the short future driving cycle. The BP neural network algorithm is employed to recognize the driving cycle types, which provides the basis for the adaptive ECMS. Based on the abovementioned approach, the power split of the fuel and electric system is determined in advance, and the optimal control of energy efficiency is achieved. A driving experiment platform is established, taking a synthetic driving cycle composed of several standard driving cycles as the target cycle, and the control strategy is tested by the driver’s real operation. The results indicate that, compared with the basic ECMS, the A-ECMS with moving-horizon-based driving cycle prediction and recognition has better SOC (state of charge) retention and reduces the fuel consumption of the engine by 3.31%, the equivalent fuel consumption of the electric system by 0.9 L/100 km and the total energy consumption by 1 L/100 km. Adaptive ECMS based on driving cycle prediction and recognition is an effective method for the energy management of HEVs.

2013 ◽  
Vol 483 ◽  
pp. 630-634
Author(s):  
Shu Chuan Gan ◽  
Ling Tang ◽  
Li Cao ◽  
Ying Gao Yue

An algorithm of artificial colony algorithm to optimize the BP neural network algorithm was presented and used to analyze the harmonics of power system. The artificial bee colony algorithm global searching ability, convergence speed for the BP neural network algorithm for harmonic analysis is easy to fall into local optimal solution of the disadvantages, and the initial weights of the artificial bee colony algorithm also greatly enhance whole algorithm model generalization capability. This algorithm using MATLAB for Artificial bee colony algorithm and BP neural network algorithm simulation training toolbox found using artificial bee colony algorithm to optimize BP neural network algorithm converges faster results with greater accuracy, with better harmonic analysis results.


Sign in / Sign up

Export Citation Format

Share Document