scholarly journals Effect of Safety Belts on Chest Compression Quality in a Moving Ambulance

2015 ◽  
Vol 22 (3) ◽  
pp. 145-153 ◽  
Author(s):  
Ys Cho ◽  
Gw Kim ◽  
Gy Kim ◽  
Jh Lee
2006 ◽  
Vol 39 (1) ◽  
pp. 1-5
Author(s):  
KATE JOHNSON
Keyword(s):  

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1122
Author(s):  
Jessica Graef ◽  
Bernd A. Leidel ◽  
Keno K. Bressem ◽  
Janis L. Vahldiek ◽  
Bernd Hamm ◽  
...  

Computed tomography (CT) represents the current standard for imaging of patients with acute life-threatening diseases. As some patients present with circulatory arrest, they require cardiopulmonary resuscitation. Automated chest compression devices are used to continue resuscitation during CT examinations, but tend to cause motion artifacts degrading diagnostic evaluation of the chest. The aim was to investigate and evaluate a CT protocol for motion-free imaging of thoracic structures during ongoing mechanical resuscitation. The standard CT trauma protocol and a CT protocol with ECG triggering using a simulated ECG were applied in an experimental setup to examine a compressible thorax phantom during resuscitation with two different compression devices. Twenty-eight phantom examinations were performed, 14 with AutoPulse® and 14 with corpuls cpr®. With each device, seven CT examinations were carried out with ECG triggering and seven without. Image quality improved significantly applying the ECG-triggered protocol (p < 0.001), which allowed almost artifact-free chest evaluation. With the investigated protocol, radiation exposure was 5.09% higher (15.51 mSv vs. 14.76 mSv), and average reconstruction time of CT scans increased from 45 to 76 s. Image acquisition using the proposed CT protocol prevents thoracic motion artifacts and facilitates diagnosis of acute life-threatening conditions during continuous automated chest compression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Maximilian Jörgens ◽  
Jürgen Königer ◽  
Karl-Georg Kanz ◽  
Torsten Birkholz ◽  
Heiko Hübner ◽  
...  

Abstract Background Mechanical chest compression (mCPR) offers advantages during transport under cardiopulmonary resuscitation. Little is known how devices of different design perform en-route. Aim of the study was to measure performance of mCPR devices of different construction-design during ground-based pre-hospital transport. Methods We tested animax mono (AM), autopulse (AP), corpuls cpr (CC) and LUCAS2 (L2). The route had 6 stages (transport on soft stretcher or gurney involving a stairwell, trips with turntable ladder, rescue basket and ambulance including loading/unloading). Stationary mCPR with the respective device served as control. A four-person team carried an intubated and bag-ventilated mannequin under mCPR to assess device-stability (displacement, pressure point correctness), compliance with 2015 ERC guideline criteria for high-quality chest compressions (frequency, proportion of recommended pressure depth and compression-ventilation ratio) and user satisfaction (by standardized questionnaire). Results All devices performed comparable to stationary use. Displacement rates ranged from 83% (AM) to 11% (L2). Two incorrect pressure points occurred over 15,962 compressions (0.013%). Guideline-compliant pressure depth was > 90% in all devices. Electrically powered devices showed constant frequencies while muscle-powered AM showed more variability (median 100/min, interquartile range 9). Although physical effort of AM use was comparable (median 4.0 vs. 4.5 on visual scale up to 10), participants preferred electrical devices. Conclusion All devices showed good to very good performance although device-stability, guideline compliance and user satisfaction varied by design. Our results underline the importance to check stability and connection to patient under transport.


Sign in / Sign up

Export Citation Format

Share Document