scholarly journals A porous crystal plasticity constitutive model for ductile deformation and failure in porous single crystals

2018 ◽  
Vol 28 (2) ◽  
pp. 233-248 ◽  
Author(s):  
Amir Siddiq

This work presents a porous crystal plasticity model which incorporates the necessary mechanisms of deformation and failure in single crystalline porous materials. Such models can play a significant role in better understanding the behaviour of inherently porous materials which could be an artefact of manufacturing process viz. 3D metal printing. The presented model is an extension of the conventional crystal plasticity model. The proposed model includes the effect of mechanics-based quantities, such as stress triaxiality, initial porosity, crystal orientation, void growth and coalescence, on the deformation and failure of a single crystalline material. A detailed parametric assessment of the model has been presented to assess the model behaviour for different material parameters. The model is validated using uniaxial data taken from literature. Lastly, model predictions have been presented to demonstrate the model’s ability in predicting deformation and failure in polycrystalline sheet materials.

2021 ◽  
Vol 228 (1) ◽  
pp. 15-31
Author(s):  
Mikhail Khadyko ◽  
Bjørn Håkon Frodal ◽  
Odd Sture Hopperstad

AbstractIn the present study, a hypoelastic–plastic formulation of porous crystal plasticity with a regularized version of Schmid’s law is proposed. The equation describing the effect of the voids on plasticity is modified to allow for an explicit analytical solution for the effective resolved shear stress. The regularized porous crystal plasticity model is implemented as a material model in a finite element code using the cutting plane algorithm. Fracture is described by element erosion at a critical porosity. The proposed model is used for two test cases of two- and three-dimensional polycrystals deformed in tension until full fracture is achieved. The simulations demonstrate the capability of the proposed model to account for the interaction between different modes of strain localization, such as shear bands and necking, and the initiation and propagation of ductile fracture in large scale polycrystal models with detailed grain description and realistic boundary conditions.


2021 ◽  
Author(s):  
Artyom A. Tokarev ◽  
Anton Yu. Yants ◽  
Alexey I. Shveykin ◽  
Nikita S. Kondratiev

2011 ◽  
Vol 702-703 ◽  
pp. 204-207 ◽  
Author(s):  
Young Ung Jeong ◽  
Frédéric Barlat ◽  
Myoung Gyu Lee

The flow stress behavior of a bake-hardenable steel during a few simple shear cycles is investigated using a crystal plasticity model. The simple shear test provides a stable way to reverse the loading direction. Stress reversals were accompanied with a lower yield stress, i.e., the Bauschinger effect, followed by a transient hardening stage with a plateau region and, permanent softening. The origins of these three distinct stages are discussed using a crystal plasticity model. To this end, the representative discrete grain set is tuned to capture such behavior by coupling slip system hardening appropriately. The simulated results are compared with experimental forward-reverse simple shear stress-strain curves. It is shown that the characteristic flow stress stages are linked to texture evolution and to the Bauschinger effect acting on the different slip systems.


2015 ◽  
Author(s):  
Pritam Chakraborty ◽  
Suleyman Bulent Biner ◽  
Yongfeng Zhang ◽  
Benjamin Whiting Spencer

Sign in / Sign up

Export Citation Format

Share Document