International Journal of Damage Mechanics
Latest Publications


TOTAL DOCUMENTS

1175
(FIVE YEARS 196)

H-INDEX

43
(FIVE YEARS 6)

Published By Sage Publications

1530-7921, 1056-7895

2022 ◽  
pp. 105678952110725
Author(s):  
Álvaro A González ◽  
Marcela A Cruchaga ◽  
Diego J Celentano

This paper presents an experimental and numerical analysis of damage evolution in AA2011 aluminum alloy wires drawn under different scenarios. To this end, load-unload tensile tests were firstly carried out in order to characterize the degradation of the mechanical response in every cycle where the experimental results show a bilinear damage relationship in terms of the effective plastic strain. Therefore, a modification of the classical Lemaitre model is proposed in this work in order to reproduce bilinear paths of damage with the addition of only two parameters that can be directly obtained from the material characterization. Then, the damage predictive capability of this new experimental-based model is assessed in numerical simulations of the drawing process in one and two passes (considering for this last case the sequential and tandem configurations) where the computed predictions are compared with the corresponding experimental data showing a good agreement between them.


2021 ◽  
pp. 105678952110681
Author(s):  
Taehyo Park ◽  
Bilal Ahmed ◽  
George Z Voyiadjis

In the past few decades, extensive research on concrete modeling to predict behavior, crack propagation, microcrack coalescence by utilizing different approaches (fracture mechanics, continuum damage mechanics) were investigated theoretically and numerically. The presented paper aims to review the theoretical work of continuum concrete damage and plasticity modeling in part I of the work. The detailed theoretical work is presented with some of the supporting work related to multiscale modeling and phase-field modeling is also part of this paper. Few other applications related to rate-dependent models and fatigue in concrete are also discussed. In part II of this work, the review of numerical work limited to finite element is presented. Some open issues in concrete damage modeling and future research needed are also discussed in part II.


2021 ◽  
pp. 105678952110632 ◽  
Author(s):  
George Z Voyiadjis ◽  
Bilal Ahmed ◽  
Taehyo Park

In this part II, companion article, we present the numerical review of continuum damage mechanics and plasticity in the context of finite element. The numerical advancements in local, nonlocal, and rate-dependent models are presented. The numerical algorithms, type of elements utilized in numerical analysis, the commercial software’s or in-house codes used for the analysis, iterative schemes, explicit or implicit approaches to solving finite element equations, and degree of continuity of element are discussed in this part. Lastly, some open issues in concrete damage modeling and future research needed are also discussed.


2021 ◽  
pp. 105678952110617
Author(s):  
Jérémy Serveaux ◽  
Carl Labergere ◽  
Frédéric Bumbieler ◽  
Khémais Saanouni

Andra, the French national radioactive waste management agency, is in charge of studying the disposal of high-level and long-lived intermediate-level waste (HLW and ILW-LL) in a deep geological repository. According to the reference concept, it is planned to encapsulate high-level waste in non-alloy P285NH steel overpacks before inserting them into horizontal steel cased micro-tunnels. This work is a part of the study about the long-term behavior of a welded steel overpack subjected to external hydrostatic pressure and several localized loading paths. Indeed, the main objective of this work is to develop the most suitable model for non-alloy steel P285NH to be used in the prediction of the long-term overpack behavior. Dealing with a ductile steel, elastoplastic constitutive equations accounting for mixed nonlinear isotropic and kinematic hardening strongly coupled with ductile isotropic damage are adopted. They are formulated based on the classical thermodynamics of irreversible processes framework with state variables at the macroscopic scale, (Germain, 1973) (Lemaitre 1985, Saanouni 2012). In this paper, a new coupling formulation between the scalar isotropic ductile damage and the deviatoric and spherical part of the Cauchy stress and elastic strain tensors is proposed. In order to calibrate the developed model on P285NH steel, multiple tensile tests are performed using classical cylindrical specimens, notched specimens and double notched specimens. In the last part, some experimental fields are measured using digital image correlation. Application is made to a simplified overpack represented by thick walled cylinder subject to compressive loading path. A FEM (Finite Element method) crushing operation of an overpack’s cylindrical part has simulated and analysed.


2021 ◽  
pp. 105678952110566
Author(s):  
Yajun Chen ◽  
Jinchuan Yang ◽  
Fusheng Wang ◽  
Jianshu Peng

The short beam shear performance of GLARE 3A-3/2 laminates with adhesive layers was investigated by combining the short beam test and the digital image correlation technique. The failure behavior was further analyzed based on finite element simulation and micro failure morphology. The results show an 8% and 58% difference in the short beam strength and bending displacement at failure of laminates along two orthogonal directions; The damage behavior of laminates is determined by the bottom unidirectional glass fiber reinforced plastic (GFRP) layers. The two typical failure modes are matrix and fiber fracture in the GFRP layer caused by local bending deformation, and interlaminar delamination between GFRP layers; The distribution of surface strain [Formula: see text] indicates the damage initiation and evolution process. The simulation result of the finite element model established in ABAQUS/Explicit shows consistency with digital image correlation analysis, which provides an effective method to predict the damage behavior of specimens with different ply structures.


2021 ◽  
pp. 105678952110460
Author(s):  
Sunil Kumar Sharma ◽  
Rakesh Chandmal Sharma ◽  
Jaesun Lee

In this paper, a multi-disciplinary analysis method is proposed for evaluating the fatigue life of railway vehicle car body structure under random dynamic loads. Firstly, the hybrid fatigue analysis method was used with Multi-Body System simulation and finite element method for evaluating the carbody structure dynamic stress histories. The dynamics stress is calculated from the longitudinal load using longitudinal train dynamics. Secondly, the nonlinear damage accumulation model was used in fatigue analysis, and carbody structure fatigue life and fatigue damage were predicted. The mathematical model simulations are compared with results produced experimentally, showing good agreement. Finally, the mode is determined after the finite element model is established. To achieve the dynamic stress at each node, the modal response is used as excitation. The carbody damage was obtained by combining dynamics stress with the NMCCMF damage accumulation model. As a result, the effect of longitudinal load on carbody fatigue damage is investigated. The longitudinal load contributes significantly to the fatigue damage of the carbody.


2021 ◽  
pp. 105678952110451
Author(s):  
Zhao Zhang ◽  
Sheng Liu ◽  
Kun Ma ◽  
Zhiwen Chen ◽  
Zhengfang Qian ◽  
...  

With the rapid development of microelectronics and nanoelectronics, Moore law has significantly slowed down and More than Moore based system in packaging (SiP) is expected to be more and more important, at least for next one to two decades. Mechanical behaviors of interconnect materials such as solders are critical for yield in processes and reliability in testing and operation. Based on the framework of crystal plastic theory and continuum damage mechanics, an anisotropic constitutive model coupled with damage was developed to describe the deformation behaviors of Sn-rich solder. In the proposed model, the inelastic shear rate function was presented by hyperbolic sinusoidal form and power law form. For the damage evolution law, the total shear strain was chosen as the damage function variable. The proposed model was implemented into the general finite element software ABAQUS by forward Euler integration procedure. Some simulation examples were performed to verify the proposed model by comparing the simulation results with the experiments at uniaxial tensile conditions with SnAgCuSb solder chosen as the Sn-rich solder. The tensile stress-strain curves of the simulation results agreed well with the experiments at small strain under different temperatures and strain rates. The simulated stress-rupture stages showed reasonable accuracy with the experiments under four representative tensile conditions. Different tensile stress-strain curves of single grains with orientation of (0-0-0)°, (0-45-0)°, and (0-90-0)° were obtained under the same loading conditions, with an inverse relationship between the tensile strength and elongation. This relationship was in accordance with a referable literature. All these results indicate that the proposed model can describe the deformation behaviors of SnAgCuSb solder well under the tensile conditions in consideration of the mechanical anisotropy and the damage evolution.


2021 ◽  
pp. 105678952110454
Author(s):  
Zhanping Song ◽  
Tong Wang ◽  
Junbao Wang ◽  
Kehui Xiao ◽  
TengTian Yang

To study the influence of osmotic pressure on the uniaxial compression mechanical properties of limestone, uniaxial compression tests were carried out on limestone specimens under different osmotic water pressure. The test results show that with the increase of osmotic pressure, the closure strain, yield strain and peak strain of limestone gradually increase, while the closure stress, yield stress, peak stress and elastic modulus gradually decrease. To describe the stress-strain response of limestone during uniaxial compression failure, the concepts of compaction factor and osmotic pressure influencing factor were proposed, and a constitutive model of rock compaction stage was established by integrating the relationship between the compaction factor and osmotic pressure influencing factor and the tangent modulus of compaction section. On this basis, combining the continuum damage mechanics theory, and assuming that the rock micro-unit strength obeys the compound power function distribution, a constitutive model reflecting the uniaxial compression mechanical properties of rock under osmotic pressure was established by the statistical method. The rationality of the model was verified using the results of the uniaxial compression test of limestone under different osmotic pressures. The results show that the test results under different osmotic pressures are in good agreement with the theoretical curves, and the model in this paper can reflect the stress-strain response of limestone before its failure under different osmotic pressures.


2021 ◽  
pp. 105678952110454
Author(s):  
Jindong Huo ◽  
Xiaochuan You ◽  
Jianan Hu ◽  
Zhuo Zhuang

From the analysis of massive fatigue test data, we find a mismatch between the fatigue life predictions done by stress-life method (SN) and those by strain-life method (εN) around the yield stress of ductile metals. Since the SN and εN methods are widely used in engineering applications, this work aims to explain such mismatch and thereby to address the fatigue life prediction at material’s yield stress, at which the material’s elastic damage and plastic damage are comparable. Based on a normalized damage concept, we propose an elasto-plastic damage accumulation model, a data-driven approach, to evaluate the fatigue damage at the yield stress. By differentiating the damage caused by the elastic from the plastic, the damage of each loading cycle is formulated as a function of both stress and strain amplitudes to accurately capture the material’s response state. With introducing the strain-energy-density based weighting factor, the proposed model can accord well with the classical methods from low-cycle fatigue to high-cycle fatigue. When it comes to the yield stress, the fatigue life estimated by the proposed model compares favorably with the fatigue test data. Therefore, beyond clarifying the mismatch between the classical approaches, the proposed model is expected to improve the accuracy in fatigue damage evaluation of ductile metals at the yield stress.


2021 ◽  
pp. 105678952110451
Author(s):  
Huu Phuoc Bui ◽  
Vincent Richefeu ◽  
Frédéric Dufour

With the lattice element method, it is required to introduce a length via, for example, a non-local approach in order to satisfy the objectivity of the mechanical response. In spite of this, the mesoscale structuring of inclusions within a matrix conveys the natural origin of the internal length for a fixed mesh. In other words, internal length is not explicitly provided to the model, but rather governed by the characteristics of the meso-structure itself. This study examines the influence that the meso-structure of quasi-brittle materials, like concretes, have on the width of the fracture process zone and thus the fracture energy. The size of the fracture process zone is assumed to correlate with a microstructural dimension of the quasi-brittle material. If a weakness is introduced by a notch, the involvement of the ligament size (a structural parameter) is also investigated. These analyses provide recommendations and warnings that could be beneficial when extracting, from material meso-structures, a required internal length for nonlocal damage models. Among the observations made, the study suggests that the property that best characterise a meso-structure length would be the spacing between inclusions rather than the size of the inclusions themselves. It is also shown that microstructural dimension and the width of the fracture process zone have comparable order of magnitude, and they trend similarly with respect to microstructural sizes such as the inclusion interdistances.


Sign in / Sign up

Export Citation Format

Share Document