fatigue crack nucleation
Recently Published Documents


TOTAL DOCUMENTS

194
(FIVE YEARS 34)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 154 ◽  
pp. 106525
Author(s):  
Hanqing Liu ◽  
Jun Song ◽  
Haomin Wang ◽  
Chuanli Yu ◽  
Yaohan Du ◽  
...  

Dependability ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 26-30
Author(s):  
G. M. Volokhov ◽  
E. S. Oganian ◽  
G. I. Gajimetov ◽  
D. A. Knyazev ◽  
V. V. Chunin ◽  
...  

Aim. The most vital unit of railway rolling stock is a wheelpair, as a broken wheel or axle may have catastrophic consequences. Therefore, before the production of a highspeed flat wagon designed for operation at speeds of up to 140 km/h, which is unique for the 1520 mm gauge space, could commence, it was required to research the applicability of the standard wheelpair for high-speed movement. Ensuring the safe operation of a wheelpair involves compliance with the requirements that are to be confirmed by means of assessment of strength and durability parameters [1]. Product conformity assessment may be based on the requirements of standards, whose voluntary fulfilment ensures compliance with [1], or other documents. Methods. The paper describes the computational and experimental methods used for confirming the strength and estimating the life (durability) of wheelpair elements in the probabilistic setting. As experimental data, the authors used the results of full-scale bench testing of wheelpairs for fatigue using the method of rotational bending as it best approximates the loading conditions in operation. The results confirmed the endurance limits of the axle and wheel as parts of an assembled wheelpair. Using design analysis, the authors examined the stress-strain state of the wheelpair caused by installation and operational loads in various running modes. Results. The conducted studies confirmed the wheelpair’s compliance with the requirements of [1–3] in terms of safety factors of fatigue strength and endurance, which eliminates the possibility of hazardous situations in the course of high-speed flat wagon operation. The time to fatigue crack nucleation in wheelpair components was evaluated using the fatigue resistance figures of the parts and equivalent amplitudes of dynamic stress caused by operational loads. It appears that this assessment allows establishing – with the assumed probability of destruction – the assigned useful life of a wheelpair axle at 32 years, which corresponds to the assigned useful life of the flat wagon according to the combined criterion. Corresponding standards and regulations required for developing the container-carrying flat wagon are being updated and a new State Standard is being developed. Conclusion. The conducted conformity assessment established that the flat wagon wheelpair meets the safety requirements of [1] and ensures the absence of unacceptable risks associated with harm to life and health of people, animals and plants, the environment and property of individuals and companies in the course of flat wagon operation.


2021 ◽  
pp. 110084
Author(s):  
Juan Guillermo Santos Macías ◽  
Chola Elangeswaran ◽  
Lv Zhao ◽  
Jean-Yves Buffière ◽  
Brecht Van Hooreweder ◽  
...  

2021 ◽  
Vol 143 (7) ◽  
Author(s):  
Maziar Toursangsaraki ◽  
Huamiao Wang ◽  
Yongxiang Hu ◽  
Dhandapanik Karthik

Abstract This study aims to model the effects of multiple laser peening (LP) on the mechanical properties of AA2024-T351 by including the material microstructure and residual stresses using the crystal plasticity finite element method (CPFEM). In this approach, the LP-induced compressive residual stress distribution is modeled through the insertion of the Eigenstrains as a function of depth, which is calibrated by the X-ray measured residual stresses. The simulated enhancement in the tensile properties after LP, caused by the formation of a near-surface work-hardened layer, fits the experimentally obtained tensile curves. The model calculated fatigue indicator parameters (FIPs) under the following cyclic loading application show a decrease in the near-surface driving forces for the crystal slip deformation after the insertion of the Eigenstrains. This leads to a higher high cycle fatigue (HCF) resistance and the possible transformation of sensitive locations for fatigue failure further to the depth after LP. Experimental observations on the enhancement in the HCF life, along with the relocation of fatigue crack nucleation sites further to the depth, reveal the improvement in the HCF properties due to the LP process and validate the numerical approach.


Author(s):  
G. Meneghetti ◽  
A. Campagnolo ◽  
D. Berto ◽  
E. Pullin ◽  
S. Masaggia

AbstractNowadays, the use of different classes of materials in the same structure is increased to keep pace with innovation and high structural performances. In this context, structural components made of different materials need to be joined together and a possible solution is given by arc welding. Dissimilar welded joints must often be able to withstand fatigue loads; however, Design Standards provide fatigue strength categories only for homogeneous welded joints. The aim of the present paper is to compare the fatigue behaviour of EN-GJS-1050 austempered ductile iron-to-S355J2 steel dissimilar joints to the categories of the corresponding homogeneous steel welded joints, as suggested in International Standards and Recommendations. For this purpose, experimental fatigue tests were performed on a selection of dissimilar welded details. First, the microstructure was identified by metallographic analysis; micro-hardness measurements were collected and residual stress profiles were obtained by using the X-ray diffraction technique on a selection of joints. Misalignments were quantified for all specimens. Then, experimental fatigue tests have been performed on a number of joint geometries subject to axial or bending fatigue loadings and tested in the as-welded conditions. The fracture surfaces of the joints have been analysed to locate fatigue crack nucleation sites.


2021 ◽  
Vol 7 ◽  
Author(s):  
Robert Fleishel ◽  
Cole Cauthen ◽  
Steven Daniewicz ◽  
Andrew Baker ◽  
J. Brian Jordon ◽  
...  

It is well established that fatigue crack nucleation and small crack growth in high strength aluminum alloys are highly influenced by the surrounding microstructure including grain boundaries, texture, inclusion barriers, among other factors. As such, specific and targeted experimental and computational methods are necessary to accurately capture and predict the discrete behavior of microstructurally small fatigue cracks. In this study, surface fatigue crack nucleation and microstructurally small crack growth in high strength aluminum alloys, commonly used in aerospace applications, are evaluated through a holistic approach encompassing fatigue testing, crack measurement, and computational prediction of crack growth rates. During fatigue testing, crack shapes and growth are quantified using a novel surface replication technique that is applied to investigate crack nucleation, as well as to collect validation data that includes an accurate description of crack shape during crack propagation, a challenging and essential component in predicting crack growth. Computational simulation of fatigue crack growth in non-straight, complex surface crack arrays typically requires high fidelity analysis using computationally expensive methods to account for the mathematical and geometrical complexities inherent in the solution. A dislocation distribution based technique has been previously demonstrated to rapidly and accurately predict the stress intensity factors for through cracks of complex shape. This method was expanded and investigated as an approach for rapidly predicting the crack growth rate of kinked and tortuous surface crack arrays, using the crack configuration and bulk material properties as inputs. To investigate the accuracy and effectiveness of this characterization approach, surface crack growth in AA7075-T7351 was experimentally analyzed and modeled under high cycle and low cycle fatigue conditions. This comprehensive approach was determined to be an expedient and applicable method for characterizing and evaluating the nucleation and crack growth rate of non-planar microstructurally small and short crack configurations.


Sign in / Sign up

Export Citation Format

Share Document