polycrystalline specimen
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Nenad D. Milošević

AbstractThis work presents an application of the subsecond calorimetry technique at very high temperatures, which uses both contact and radiance temperature measurements. This technique is normally applied for thermophysical characterization of high temperature solid phase materials in the temperature range from ambient up to about 2600 K, which is the limit of the standard tungsten-rhenium thermocouple use. Simultaneously with contact temperature measurements, noncontact or radiance temperature detection may be performed in the approximate range from 1000 to 2600 K in order to acquire information on spectral normal emissivity of specimen under test. In this study, however, the specimen is heated above 2600 K and, then, the temperature is measured only by the noncontact mean. In the extended temperature range, the obtained values of the spectral normal emissivity are extrapolated for each experimental run, which makes possible a conversion from radiance to absolute specimen temperature. In order to test this application, a pure polycrystalline specimen of tungsten in the form of rod, 3 mm in diameter and 200 mm in length, has been used. The specimen has been heated in vacuum environment of about 10–4 mbar by short pulses of high DC current with a gradual increase of the total heating time from about 0.5–2.5 s. During the specimen heating and the beginning of the cooling period, four sets of experimental data have been recorded and reduced by using the corresponding data reduction procedure. Obtained results of specific heat and specific electrical resistivity from ambient to 3700 K, total hemispherical emissivity from 1000 to 3700 K and spectral normal emissivity from 1000 to 2600 K (extrapolated to 3700 K) are presented, discussed and compared with related literature data.


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Axel Henningsson ◽  
Johannes Hendriks

A new method for estimation of intragranular strain fields in polycrystalline materials based on scanning three-dimensional X-ray diffraction (scanning 3DXRD) data is presented and evaluated. Given an a priori known anisotropic compliance, the regression method enforces the balance of linear and angular momentum in the linear elastic strain field reconstruction. By using a Gaussian process (GP), the presented method can yield a spatial estimate of the uncertainty of the reconstructed strain field. Furthermore, constraints on spatial smoothness can be optimized with respect to measurements through hyperparameter estimation. These three features address weaknesses discussed for previously existing scanning 3DXRD reconstruction methods and, thus, offer a more robust strain field estimation. The method is twofold validated: firstly by reconstruction from synthetic diffraction data, and secondly by reconstruction of a previously studied tin (Sn) grain embedded in a polycrystalline specimen. Comparison against reconstructions achieved by a recently proposed algebraic inversion technique is also presented. It is found that the GP regression consistently produces reconstructions with lower root-mean-square errors, mean absolute errors and maximum absolute errors across all six components of strain.


2021 ◽  
Vol 54 (2) ◽  
pp. 686-696
Author(s):  
J. W. Huang ◽  
Y. Y. Zhang ◽  
S. C. Hu ◽  
Y. Cai ◽  
S. N. Luo

DATAD, a Python-based X-ray diffraction simulation code, has been developed for simulating one- and two-dimensional diffraction patterns of a polycrystalline specimen with an arbitrary texture under an arbitrary deformation state and an arbitrary detection geometry. Pixelated planar and cylindrical detectors can be used. The basic principles and key components of the code are presented along with the usage of DATAD. As validation and application cases, X-ray diffraction patterns of single-crystal and polycrystalline specimens with or without texture, or applied strain, on a planar or cylindrical detector are simulated.


Author(s):  
Natalia Porotnikova ◽  
Andrei Farlenkov ◽  
Sergey Naumov ◽  
Maxim Vlasov ◽  
Anna Khodimchuk ◽  
...  

The 16O/18O oxygen exchange kinetics between the gas phase and the oriented single crystal and polycrystalline specimen has been studied; the rates of individual stages of oxygen exchange have been calculated and discussed.


2021 ◽  
Author(s):  
Artyom A. Tokarev ◽  
Anton Yu. Yants ◽  
Alexey I. Shveykin ◽  
Nikita S. Kondratiev

2018 ◽  
Vol 941 ◽  
pp. 1242-1247
Author(s):  
Shinji Ando ◽  
Hiroaki Rikihisa ◽  
Masayuki Tsushida ◽  
Hiromoto Kitahara

In this study, to investigate effects of yttrium and other elements for non-basal slips, magnesium alloy single crystals were stretched parallel to basal plane in various temperatures, and polycrystalline magnesium alloys were also tested to estimate contribution of non-basal slips to their tensile deformation behaviour. In pure magnesium single crystals, second order pyramidal (c+a) slip (SPCS) was observed at 298K. Above room temperature, first order pyramidal (c+a) slip (FPCS) was active. In the Mg - (0.6-0.9) Y alloy single crystals, FPCS was observed at 77K to 298K, while yield stress of the Mg-Y alloy single crystals was higher than that of pure magnesium. In tensile test of polycrystalline specimen, slips lines of non-basal slip systems such as SPCS, FPCS and prismatic slip were observed even at yielding in addition to basal slip lines. Among the non-basal slips, activities of FPCS and prismatic slips were increased with increasing strain in Mg - Y alloy polycrystals. Our study suggested that active non-basal slip system in tension parallel to basal plane is (c+a) pyramidal slip and enhanced ductility of magnesium - yttrium alloy would be caused from increased activity of FPCS by yttrium addition.


2018 ◽  
Vol 51 (1) ◽  
pp. 148-156
Author(s):  
A. Morawiec

Standard diffraction-based measurements of elastic strains in polycrystalline materials rely on shifts of Bragg peaks. Measurement results are usually given in the form of a single tensor assumed to represent the average stress in the material, but the question about the true relationship between the tensor and the average stress generally goes without notice. This paper describes a novel procedure for analysis of data obtained from such measurements. It is applicable in cases when spatial correlations in the material are ignored and statistical information about the polycrystalline specimen is limited to texture-related intensity pole figures and strain pole figures. A tensor closest to auxiliary strain tensors linked to the results of measurements in particular specimen directions is considered to represent the strain state. This tensor is shown to be a good approximation of the average strain tensor. A closed-form expression allowing for its direct computation from experimental pole figures is given. The performance of the procedure is illustrated using simulated data.


2015 ◽  
Vol 21 (4) ◽  
pp. 969-984 ◽  
Author(s):  
Thomas E. Buchheit ◽  
Jay D. Carroll ◽  
Blythe G. Clark ◽  
Brad L. Boyce

AbstractUsing an in situ load frame within a scanning electron microscope, a microstructural section on the surface of an annealed tantalum (Ta) polycrystalline specimen was mapped at successive tensile strain intervals, up to ~20% strain, using electron backscatter diffraction. A grain identification and correlation technique was developed for characterizing the evolving microstructure during loading. Presenting the correlated results builds on the reference orientation deviation (ROD) map concept where individual orientation measurements within a grain are compared with a reference orientation associated with that grain. In this case, individual orientation measurements in a deformed grain are measured relative to a reference orientation derived from the undeformed (initial) configuration rather than the current deformed configuration as has been done for previous ROD schemes. Using this technique helps reveal the evolution of crystallographic orientation gradients and development of deformation-induced substructure within grains. Although overall crystallographic texture evolved slowly during deformation, orientation spread within grains developed quickly. In some locations, misorientation relative to the original orientation of a grain exceeded 20° by 15% strain. The largest orientation changes often appeared near grain boundaries suggesting that these regions were preferred locations for the initial development of subgrains.


Sign in / Sign up

Export Citation Format

Share Document