scholarly journals Bayesian Classification of Proteomics Biomarkers from Selected Reaction Monitoring Data using an Approximate Bayesian Computation-Markov Chain Monte Carlo Approach

2018 ◽  
Vol 17 ◽  
pp. 117693511878692
Author(s):  
Kashyap Nagaraja ◽  
Ulisses Braga-Neto

Selected reaction monitoring (SRM) has become one of the main methods for low-mass-range–targeted proteomics by mass spectrometry (MS). However, in most SRM-MS biomarker validation studies, the sample size is very small, and in particular smaller than the number of proteins measured in the experiment. Moreover, the data can be noisy due to a low number of ions detected per peptide by the instrument. In this article, those issues are addressed by a model-based Bayesian method for classification of SRM-MS data. The methodology is likelihood-free, using approximate Bayesian computation implemented via a Markov chain Monte Carlo procedure and a kernel-based Optimal Bayesian Classifier. Extensive experimental results demonstrate that the proposed method outperforms classical methods such as linear discriminant analysis and 3NN, when sample size is small, dimensionality is large, the data are noisy, or a combination of these.

Biometrika ◽  
2020 ◽  
Vol 107 (2) ◽  
pp. 381-395
Author(s):  
Matti Vihola ◽  
Jordan Franks

Summary Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We propose an approach that involves using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure sufficient mixing and post-processing the output, leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo algorithm, which finds a balanced tolerance level automatically based on acceptance rate optimization. Our experiments show that post-processing-based estimators can perform better than direct Markov chain Monte Carlo targeting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification.


Sign in / Sign up

Export Citation Format

Share Document