Critical shear crack theory-based punching shear model for FRP-reinforced concrete slabs

2020 ◽  
pp. 136943322097814
Author(s):  
Xing-lang Fan ◽  
Sheng-jie Gu ◽  
Xi Wu ◽  
Jia-fei Jiang

Owing to their high strength-to-weight ratio, superior corrosion resistance, and convenience in manufacture, fiber-reinforced polymer (FRP) bars can be used as a good alternative to steel bars to solve the durability issue in reinforced concrete (RC) structures, especially for seawater sea-sand concrete. In this paper, a theoretical model for predicting the punching shear strength of FRP-RC slabs is developed. In this model, the punching shear strength is determined by the intersection of capacity and demanding curve of FRP-RC slabs. The capacity curve is employed based on critical shear crack theory, while the demand curve is derived with the help of a simplified tri-linear moment-curvature relationship. After the validity of the proposed model is verified with experimental data collected from the literature, the effects of concrete strength, loading area, FRP reinforcement ratio, and effective depth of concrete slabs are evaluated quantitatively.

2011 ◽  
Vol 90-93 ◽  
pp. 933-939 ◽  
Author(s):  
Qiu Ning Yang ◽  
Ming Jie Mao ◽  
Sumio Hamada

Several equations for punching shear strength of the reinforced concrete slab have been proposed in the world. These equations have their own factors affecting the strength. There are numerous test data for punching shear strength of RC slabs, which have been obtained by numerous researchers. A database with approximately 300 specimens has been structured through the present study. In the present study seven equations for punching shear strength are evaluated based on the database. CCES equation is also evaluated from the present database.


2017 ◽  
Vol 145 ◽  
pp. 518-527 ◽  
Author(s):  
Juozas Valivonis ◽  
Tomas Skuturna ◽  
Mykolas Daugevičius ◽  
Arnoldas Šneideris

2018 ◽  
Vol 33 ◽  
pp. 02007 ◽  
Author(s):  
Valery Filatov

The article presents the methodology and results of an analytical study of structural parameters influence on the value of punching force for the joint of columns and flat reinforced concrete slab. This design solution is typical for monolithic reinforced concrete girderless frames, which have a wide application in the construction of high-rise buildings. As the results of earlier studies show the punching shear strength of slabs at rectangular columns can be lower than at square columns with a similar length of the control perimeter. The influence of two structural parameters on the punching strength of the plate is investigated - the ratio of the side of the column cross-section to the effective depth of slab C/d and the ratio of the sides of the rectangular column Cmax/Cmin. According to the results of the study, graphs of reduction the control perimeter depending on the structural parameters are presented for columns square and rectangular cross-sections. Comparison of results obtained by proposed approach and MC2010 simplified method are shown, that proposed approach gives a more conservative estimate of the influence of the structural parameters. A significant influence of the considered structural parameters on punching shear strength of reinforced concrete slabs is confirmed by the results of experimental studies. The results of the study confirm the necessity of taking into account the considered structural parameters when calculating the punching shear strength of flat reinforced concrete slabs and further development of code design methods.


2018 ◽  
Vol 11 (2) ◽  
pp. 255-278
Author(s):  
C. O. CAMPOS ◽  
L. M. TRAUTWEIN ◽  
R. B. GOMES ◽  
G. MELO

Abstract The current study presents the results of tests conducted in 5 reinforced concrete slabs (415 cm x 415 cm x 7 cm) in order to experimentally check the possibility of reinforcing their upper surface, as well as to assess the adhesion between the old and the reinforcing concrete layers in the slab. The main variables were the concrete and reinforcement strength deficiencies. Reference slab “L1” was tested until reaching the failure load, whereas the others were tested until reaching certain load limit, reinforced and retested until reaching the failure load. All slabs failed under bending. The strengthening increased the failure load by 30% in slabs reinforced at minimum reinforcement rate when they were compared to similar non-reinforced slabs, regardless of the original concrete strength. None of the tests conducted in the reinforced slabs showed detachments or evidence of adhesion loss between the old and reinforcing concretes.


2015 ◽  
Vol 7 (5) ◽  
pp. 168781401558425 ◽  
Author(s):  
Hyunjin Ju ◽  
Na-Rae Cheon ◽  
Deuck Hang Lee ◽  
Jae-Yuel Oh ◽  
Jin-Ha Hwang ◽  
...  

Structures ◽  
2020 ◽  
Vol 25 ◽  
pp. 760-773 ◽  
Author(s):  
Davood Mostofinejad ◽  
Navid Jafarian ◽  
Ali Naderi ◽  
Amirmahdi Mostofinejad ◽  
Mohamad Salehi

Sign in / Sign up

Export Citation Format

Share Document