steel fiber reinforced concrete
Recently Published Documents


TOTAL DOCUMENTS

1096
(FIVE YEARS 388)

H-INDEX

40
(FIVE YEARS 11)

2022 ◽  
Vol 12 (1) ◽  
pp. 411
Author(s):  
Inkyu Rhee

The shear failure of a reinforced concrete member is a sudden diagonal tension failure; flexible failure is gradual, associated with significant cracks, and leads to extensive sagging. Therefore, reinforced shear rebars are commonly used to ensure that flexible failure occurs before shear failure under extreme conditions. Extensive efforts are underway to replace conventional shear reinforcements with steel fibers. Here, a nonlinear analysis of a steel fiber-reinforced concrete T-beam was performed in order to estimate the maximum shear capacity with the aid of experimental test data. A continuum-damaged plasticity model and modified compression field theory were used for nonlinear analysis. Three 360 × 360-mm web elements were selected between the shear span; changes in the principal axis caused by crack development and propagation were traced. Changes in the crack angle according to the average strain of the bottom longitudinal reinforcement and the vertical strain of the web element were also determined. For verification, a strut-tie model was used to predict shear capacity. The experimental results and the finite element analyses were in good agreement.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Dong Li ◽  
Qing Guo ◽  
Shi Liu

To verify the steel fiber effect on durability properties of the concrete in cold regions, four types of steel fiber reinforced concrete were prepared, and the fiber dosage were 0, 20 kg, 40 kg, and 60 kg, respectively. The rapid freeze-thaw test was adopted to evaluate the frost resistance durability, and the evaluation indexes of the mass loss and the residual dynamic modulus of elasticity (RDME) the samples were compared, respectively. The frost damage of the matrix regarding the different freeze-thaw cycles (FTCs) was evaluated using the Weibull distribution. The capillary water absorption (CWA) experiments were also conducted corresponding to different freeze-thaw cycles (FTCs). The results revealed that the mass loss was not an effective index for frost damage evaluation of macro-steel fiber reinforced concrete. The FTCs corresponding to the loss of RDME to 60% were enhanced noticeably with the increase of fiber content. The relationship between the frost damage and the FTCs can be evaluated using the Weibull distribution. Compared with the PC, the frost resistance grade of the reinforced concrete with fiber dosage of 60 kg/m3 increased by 125%. After the frost action, the CWA capacity of concrete improved significantly, while, under the same FTCs, the CWA of the matrix decreased with the increment of macro-steel fiber dosage. The steel fiber showed a strong positive influence on enhancing the durability performance of concrete in cold region.


2021 ◽  
Vol 14 (1) ◽  
pp. 298
Author(s):  
Ozge Ersu Cakir ◽  
Fatih Cetisli

In this study, it is aimed to investigate the importance of the affecting parameters on the pressure–displacement relationship of steel fiber reinforced concrete panels. Among these parameters, panel thickness, panel dimensions, material type, and boundary conditions of the panels are the parameters that were examined. In this context, the effects of surface pressure on the steel fiber reinforced concrete panels were investigated. It was observed that as the thickness and the fiber ratio increased, the ultimate bearing capacity increased. It was determined that it may not be enough to support the panels only at the corner points, and intermediate supports are needed. As the support spacing decreased, the absorbed surface pressure increased. In addition, it was concluded that the increase in the amount of steel fiber in the concrete material increased the strength, deflection, and ductility values.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Hyun-Do Yun ◽  
Gwon-Young Jeong ◽  
Won-Chang Choi

Steel fiber has been used successfully in concrete mixtures to control volumetric changes, including shrinkage. However, the feasibility of the use of steel fiber has been restricted to nonstructural construction, such as ‘slab on ground’. Recently, researchers have attempted to expand the applications of steel fiber to replace structural reinforcement (rebar) and have shown promising results in its substitution for shear reinforcement. Few studies have been conducted to ensure the feasibility of using steel fiber in structural components, however. This experimental study was designed to investigate the shear performance of steel fiber-reinforced concrete beams using the tensile strength of steel fiber and the shear span-to-depth ratio as variables. The experimental results indicate that the tensile strength of steel fiber significantly affects the shear strength of steel fiber-reinforced concrete beams, regardless of the shear span-to-depth ratio, and that steel fiber can play a role in shear reinforcement of concrete beams.


Sign in / Sign up

Export Citation Format

Share Document