scholarly journals Nonlinear energy sink applied for low-frequency noise control inside acoustic cavities: A review

Author(s):  
Jianwang Shao ◽  
Jinmeng Yang ◽  
Xian Wu ◽  
Tao Zeng

In recent years, the research of nonlinear energy sink on low-frequency noise control has become a hotspot. By adding a nonlinear energy sink into one primary system, it is possible to obtain the significant target energy transfer characteristics. The target energy transfer can be defined for which the vibration energy of the primary structure is irreversibly transferred to the nonlinear energy sink, quickly concentrated in the nonlinear energy sink and dissipated by the nonlinear energy sink damping. This method has significant advantages to control the broadband low-frequency noise inside the transportations (such as cars, trains, airplanes, etc.). Compared with traditional noise reduction methods such as adding the damping and acoustical materials, the nonlinear energy sink has a simple and lightweight structure. The paper reviews the nonlinear characteristics of the nonlinear energy sink, the main theoretical research methods and the applications of vibration and noise control, and discusses the application of the nonlinear energy sink for the control of low-frequency noise inside the three-dimensional acoustic cavities, which provides the reference and guidance for the low-frequency noise control inside the acoustic cavities of the mean of transportation.

2021 ◽  
Vol 263 (1) ◽  
pp. 5891-5901
Author(s):  
Jinmeng Yang ◽  
JianWang Shao ◽  
GuoMing Deng ◽  
Xian Wu

The target energy transfer (TET) between a membrane nonlinear energy sink (NES) and the acoustic medium inside a rectangular cavity is studied. The acoustic medium is interacted with a plate and multi-order modes coupling of the 2 structure is considered. Based on the modal expansion approach, with Green's function, Helmholtz equation and the boundary conditions of the acoustic medium and the plate, the coupling coefficient matrix of the mode of 2 structures is derived. The equations of the membrane NES, multi-order modes of the acoustic medium and multi-order modes of the plate are established, and numerical analysis is used to investigate the TET phenomenon. The results show that in condition of a single-point excitation to the plate, under a certain range of excitation levels, the membrane can be seen as a kind of NES, and the energy in the acoustic medium can be unidirectionally transmitted to the membrane NES and attenuated, reducing the sound pressure level in the cavity. At the same time, it is found that the NES can suppress multi-order sound pressure of the acoustic medium at the same time, and realize the control of cascaded resonance noise.


Author(s):  
Sean A. Hubbard ◽  
D. Michael McFarland ◽  
Alexander F. Vakakis ◽  
Lawrence A. Bergman

We study computationally the passive, nonlinear targeted energy transfers induced by resonant interactions between a single-degree-of-freedom nonlinear energy sink and a uniform-plate model of a flexible, swept aircraft wing. We show that the nonlinear energy sink can be designed to quickly and efficiently absorb energy from one or more wing modes in a completely passive manner. Results indicate that it is feasible to use such a device to suppress or prevent aeroelastic instabilities like limit-cycle oscillations. The design of a compact nonlinear energy sink is introduced and the parameters of the device are examined. Simulations performed using a finite-element model of the wing coupled to discrete equations governing the energy sink indicate that targeted energy transfer is achievable, resulting, for example, in a rapid and significant reduction in the second bending mode response of the wing. Finally, the finite element model is used to simulate the effects of increased nonlinear energy sink stiffness, and to show the conditions under which the nonlinear energy sink will resonantly interact with higher-frequency wing modes.


2021 ◽  
Vol 263 (4) ◽  
pp. 2724-2729
Author(s):  
Yutong Xue ◽  
Amrutha Dasyam ◽  
J. Stuart Bolton ◽  
Bhisham Sharma

The acoustic absorption of granular aerogel layers with a granule sizes in the range of 2 to 40 μm is dominated by narrow-banded, high absorption regions in the low-frequency range and by reduced absorption values at higher frequencies. In this paper, we investigate the possibility of developing new, low-frequency noise reduction materials by layering granular aerogels with traditional porous sound absorbing materials such as glass fibers. The acoustic behavior of the layered configurations is predicted using the arbitrary coefficient method, wherein the granular aerogel layers are modeled as an equivalent poro-elastic material while the fibrous media and membrane are modeled as limp media. The analytical predictions are verified using experimental measurements conducted using the normal incidence, two-microphone impedance tube method. Our results show that layered configurations including granular aerogels, fibrous materials, and limp membranes provide enhanced sound absorption properties that can be tuned for specific noise control applications over a broad frequency range.


2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Mohammad A. AL-Shudeifat

The nonlinear energy sink (NES) is usually coupled with a linear oscillator (LO) to rapidly transfer and immediately dissipate a significant portion of the initial shock energy induced into the LO. This passive energy transfer and dissipation are usually achieved through strong resonance captures between the NES and the LO responses. Here, a nontraditional set of nonlinear coupling restoring forces is numerically investigated to introduce enhanced versions of the NESs. In this new set of nonlinear coupling restoring forces, one has a varying nonlinear stiffness that includes both of hardening and softening stiffness components during the oscillation, which appear in closed-loops under the effect of the damping. The obtained results by the numerical simulation have shown that employing this kind of the nonlinear restoring forces for passive targeted energy transfer (TET) is promising for shock mitigation.


2011 ◽  
Vol 221 (1-2) ◽  
pp. 175-200 ◽  
Author(s):  
Claude-Henri Lamarque ◽  
Oleg V. Gendelman ◽  
Alireza Ture Savadkoohi ◽  
Emilie Etcheverria

Sign in / Sign up

Export Citation Format

Share Document