acoustic cavity
Recently Published Documents


TOTAL DOCUMENTS

203
(FIVE YEARS 37)

H-INDEX

17
(FIVE YEARS 3)

2021 ◽  
pp. 107754632110482
Author(s):  
Xiaojun Hu ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Tian He

The tire acoustic cavity resonance noise (TACRN) is known to contribute to audible noise in the passenger compartment of a vehicle. In order to reduce TACRN effectively, its mechanism needs to be grasped better. In this paper, the calculation formulas of tire acoustic cavity resonance frequency for four different conditions such as static unloaded tire, static loaded tire, rotating unloaded tire, and rotating loaded tire are analyzed and verified by the simulation and experiment. In particular, the resonance frequency formulas of static loaded tire introducing inflation pressure and rotating loaded tire are proposed and verified, respectively, in this paper. And the influence of tire inflation pressure, load, and running velocity on splitting frequency are studied. Some new findings are described and discussed; for example, the first-order resonance frequency may split into four resonance frequencies in most cases, and may split into three resonance frequencies in certain cases when a loaded tire is rotating. And the existing conditions for three and four resonance frequencies are also discussed.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2257
Author(s):  
Yufei Zhang ◽  
Jingtao Du ◽  
Yang Liu

The general dynamic characteristics of the acoustic cavity with multiple partial partitions are presented in this thesis. A theoretical model has been developed for predictions, and several configurations are analyzed. To describe the apertures on the interface of subcavities, the virtual air panel assumption is introduced into the improved Fourier series system. The governing equations of the coupling system are derived by using the energy principle. The results obtained with the proposed model are firstly compared with the numerical calculations based on the finite element method (FEM). Subsequently, a configuration made up from a rigid cavity partitioned by a partial steel panel has been specifically built, and the forced responses of the coupling system have been measured for comparison and model validation. The present results are excellent over most of the studied frequency range. Furthermore, the visualizations of the interior sound intensity field of the acoustic cavity with three partial partitions under different frequencies are researched to illustrate the energy transmission paths and vibro-acoustic coupling mechanism of the complicated system. The obtained results are believed to be helpful in the optimal design of the vibro-acoustic coupling system with optimal sound insulation capacity.


2021 ◽  
Vol 263 (6) ◽  
pp. 942-953
Author(s):  
Wei Zhao ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Tian He

Tire acoustic cavity resonance noise (TACRN) is a typical annoying lower-frequency interior noise of a passenger car. The widely used attenuating method of attaching the porous sound absorption material in tire cavity can reduce TACRN effectively, but causes the increase of tire-wheel assembly weight and cost, also the poor durability. Additionally, the Helmholtz resonator (HR) is also used in the wheel of some cars although having only narrow effective band. The existing investigation shows that the frequency of TACRN varies with the car speed and load and also has the split characteristics. The change of TACRN frequency causes a certain difficulty to suppress TACRN effectively. Aiming at this problem, in this paper, TACRN frequency range of a specific tire cavity under different operating conditions is first calculated and analyzed. Then, for a specific aluminum alloy wheel, a HR assembly including several HRs is designed to make the natural frequencies of HR assembly cover the TACRN frequencies. Finally, the reduction effect of TACRN is simulated and evaluated by comparing the sound fields in tire cavity with/without HR assembly under same volume velocity sound source. This work is helpful for attenuating TACRN effectively under the changing operating conditions.


2021 ◽  
Vol 263 (3) ◽  
pp. 3625-3632
Author(s):  
Ho Yong Kim ◽  
Yeon June Kang

Back by a rigid cavity filled with a layer of porous layer, the sound absorption performance of a micro-perforated panel (MPP) can be enhanced in comparison with other resonance based sound absorbers. In this paper, a theoretical model of a finite flexible MPP back by a rigid air cavity filled with a fibrous porous material is developed to predict normal sound absorption coefficients. Displacements of MPP and sound pressure field in fibrous porous material and acoustic cavity are expressed using a series of modal functions, and the sound absorption coefficients of MPP system are obtained. Additionally, comparison of energy dissipation by MPP and fibrous material is performed to identify effects of a fibrous material on the sound absorption of a MPP. As expected, at anti-resonance frequency of an MPP, the fibrous material provide an alternative energy dissipation mechanism.


2021 ◽  
Vol 263 (1) ◽  
pp. 5891-5901
Author(s):  
Jinmeng Yang ◽  
JianWang Shao ◽  
GuoMing Deng ◽  
Xian Wu

The target energy transfer (TET) between a membrane nonlinear energy sink (NES) and the acoustic medium inside a rectangular cavity is studied. The acoustic medium is interacted with a plate and multi-order modes coupling of the 2 structure is considered. Based on the modal expansion approach, with Green's function, Helmholtz equation and the boundary conditions of the acoustic medium and the plate, the coupling coefficient matrix of the mode of 2 structures is derived. The equations of the membrane NES, multi-order modes of the acoustic medium and multi-order modes of the plate are established, and numerical analysis is used to investigate the TET phenomenon. The results show that in condition of a single-point excitation to the plate, under a certain range of excitation levels, the membrane can be seen as a kind of NES, and the energy in the acoustic medium can be unidirectionally transmitted to the membrane NES and attenuated, reducing the sound pressure level in the cavity. At the same time, it is found that the NES can suppress multi-order sound pressure of the acoustic medium at the same time, and realize the control of cascaded resonance noise.


2021 ◽  
Author(s):  
Yuhua Cai ◽  
Yi Luo ◽  
Xinxin Wang ◽  
Shuqing Yang ◽  
Fuyuan Zhang ◽  
...  

Abstract Incomplete penetration is a type of welding defect that severely impacts the quality of weldments. In order to identify penetration levels in pulsed laser and plasma transferred arc (laser-PTA) hybrid welding, this paper uses structure-borne acoustic sensors to detect acoustic signals. Their characteristics are then analyzed with respect to the time and frequency domains. Acoustic signals characteristic of incomplete-penetration defects were extracted using a Butterworth band-pass filter. Physical mechanisms of laser excited acoustic wave were then studied by analyzing the correlation between incomplete-penetration defects and their characteristic acoustic signals. The results showed that acoustic signals correlating to incomplete-penetration defects have characteristic frequencies ranging from 0 to 10 kHz, which are generated by interaction between the pulsed laser beam and molten pool. An incomplete-penetration defect constitutes an acoustic cavity, which is an acoustic transmission structure. The structure of phonation sources and the acoustic cavity are affected by levels of penetration, giving rise to acoustic signals with different characteristics. In general, the study of physical mechanisms of laser excited acoustic wave lays a foundation for on-line identification of incomplete-penetration defects in laser-PTA hybrid welding.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wentao Yu

When a certain electric vehicle is driving at a constant speed of 40 km/h on the rough asphalt road, the rear passenger can obviously feel the ear pressure, which seriously affects the comfort. Through the analysis of objective data, it was found that the problem was caused by the road excitation, which leads to the coupling between the mode of the backup door and the mode of the acoustic cavity, and causes the resonance of the car cavity, thus causing the ear pressure sensation. To solve this problem, this paper optimizes the backup door by means of experiment and simulation, increases the dynamic vibration absorber, makes its modal frequency avoid the acoustic cavity modal frequency, and achieves the purpose of reducing the interior noise. After optimization, the vehicle noise is reduced by 8 dBA at 42 Hz under 40 km/h working condition of rough road surface, and the ear pressure sensation is reduced at the same time, thus improving the NVH (noise, vibration, and harshness) performance of the vehicle.


2021 ◽  
Vol 11 (9) ◽  
pp. 3979
Author(s):  
Wei Zhao ◽  
Yuting Liu ◽  
Xiandong Liu ◽  
Yingchun Shan ◽  
Xiaojun Hu

As a kind of low-frequency vehicle interior noise, tire acoustic cavity resonance noise plays an important role, since the other noise (e.g., engine noise, wind noise and friction noise) has been largely suppressed. For the suspension system, wheels stand first in the propagation path of this energy. Therefore, it is of great significance to study the influence of wheel design on the transmission characteristics of this vibration energy. However, currently the related research has not received enough attention. In this paper, two sizes of aluminum alloy wheel finite element models are constructed, and their modal characteristics are analyzed and verified by experimental tests simultaneously. A mathematically fitting sound pressure load model arising from the tire acoustic cavity resonance acting on the rim is first put forward. Then, the power flow method is applied to investigate the resonance energy distribution and transmission characteristics in the wheels. The structure intensity distribution and energy transmission efficiency can be described and analyzed clearly. Furthermore, the effects of material structure damping and the wheel spoke number on the energy transmission are also discussed.


Sign in / Sign up

Export Citation Format

Share Document