Deep feature learning of in-cylinder flow fields to analyze cycle-to-cycle variations in an SI engine

2020 ◽  
pp. 146808742097414
Author(s):  
Daniel Dreher ◽  
Marius Schmidt ◽  
Cooper Welch ◽  
Sara Ourza ◽  
Samuel Zündorf ◽  
...  

Machine learning (ML) models based on a large data set of in-cylinder flow fields of an IC engine obtained by high-speed particle image velocimetry allow the identification of relevant flow structures underlying cycle-to-cycle variations of engine performance. To this end, deep feature learning is employed to train ML models that predict cycles of high and low in-cylinder maximum pressure. Deep convolutional autoencoders are self-supervised-trained to encode flow field features in low dimensional latent space. Without the limitations ascribable to manual feature engineering, ML models based on these learned features are able to classify high energy cycles already from the flow field during late intake and the compression stroke as early as 290 crank angle degrees before top dead center ([Formula: see text]) with a mean accuracy above chance level. The prediction accuracy from [Formula: see text] to [Formula: see text] is comparable to baseline ML approaches utilizing an extensive set of engineered features. Relevant flow structures in the compression stroke are revealed by feature analysis of ML models and are interpreted using conditional averaged flow quantities. This analysis unveils the importance of the horizontal velocity component of in-cylinder flows in predicting engine performance. Combining deep learning and conventional flow analysis techniques promises to be a powerful tool for ultimately revealing high-level flow features relevant to the prediction of cycle-to-cycle variations and further engine optimization.

2021 ◽  
Vol 13 (8) ◽  
pp. 1455
Author(s):  
Jifang Pei ◽  
Weibo Huo ◽  
Chenwei Wang ◽  
Yulin Huang ◽  
Yin Zhang ◽  
...  

Multiview synthetic aperture radar (SAR) images contain much richer information for automatic target recognition (ATR) than a single-view one. It is desirable to establish a reasonable multiview ATR scheme and design effective ATR algorithm to thoroughly learn and extract that classification information, so that superior SAR ATR performance can be achieved. Hence, a general processing framework applicable for a multiview SAR ATR pattern is first given in this paper, which can provide an effective approach to ATR system design. Then, a new ATR method using a multiview deep feature learning network is designed based on the proposed multiview ATR framework. The proposed neural network is with a multiple input parallel topology and some distinct deep feature learning modules, with which significant classification features, the intra-view and inter-view features existing in the input multiview SAR images, will be learned simultaneously and thoroughly. Therefore, the proposed multiview deep feature learning network can achieve an excellent SAR ATR performance. Experimental results have shown the superiorities of the proposed multiview SAR ATR method under various operating conditions.


Sign in / Sign up

Export Citation Format

Share Document