scholarly journals Kinetics and mechanism of formation of the complex [Ru(CN)5INH]3− through the ligand substitution reaction between the aquapentacyanoruthenate(II) anion and isoniazid

2019 ◽  
Vol 44 (3) ◽  
pp. 244-256
Author(s):  
Rupal Yadav ◽  
Radhey Mohan Naik

The formation kinetics of the complex, [Ru(CN)5INH]3−, formed through the ligand substitution reaction between isoniazid (INH) and aquapentacyanoruthenate(II) ([Ru(CN)5H2O]3−), have been investigated, under pseudo first-order conditions, as a function of concentrations of [INH] and [Ru(CN)5H2O]3−, ionic strength and temperature at pH = 4.0 ± 0.02 in 0.2 M NaClO4 spectrophotometrically at 502 nm ( λmax of intense yellow colour product [Ru(CN)5INH]3−) corresponding to metal-to-ligand charge-transfer transitions, in aqueous medium. The pseudo first-order condition was maintained by taking at least 10% excess of [INH] over [Ru(CN)5H2O]3−. The stoichiometry of the reaction product was found to be 1:1 which was further supported and characterized using elemental analysis, infrared, nuclear magnetic resonance and mass spectrometric techniques. Thermodynamic and kinetic parameters have also been computed, using the Eyring equation, and the values of ΔH≠, Ea, ΔG≠ and ΔS≠ were found to be 47.3 kJ mol−1, 49.8 kJ mol−1, −8.62 kJ mol−1 and 187.6 J K−1mol−1, respectively. The reaction was found to obey first-order kinetics with respect to [INH]. It exhibited a negative salt effect on the rate upon variation of ionic strength of the medium. A tentative mechanistic scheme was proposed on the basis of experimental findings.

2012 ◽  
Vol 36 (6) ◽  
pp. 1408 ◽  
Author(s):  
Andrew R. Conrad ◽  
Hanaa A. Hassanin ◽  
Michael J. Tubergen ◽  
István Fábián ◽  
Nicola E. Brasch

RSC Advances ◽  
2014 ◽  
Vol 4 (82) ◽  
pp. 43516-43524 ◽  
Author(s):  
Avradeep Samanta ◽  
Goutam Kr. Ghosh ◽  
Ishani Mitra ◽  
Subhajit Mukherjee ◽  
Jagadeesh C. Bose K ◽  
...  

Kinetics of the interaction between [Pt(pic)(H2O)2](ClO4)2and selected thiols has been studied in aqueous medium as a function of [complex], [thiol], pH and temperature at constant ionic strength.


1996 ◽  
Vol 34 (9) ◽  
pp. 41-48 ◽  
Author(s):  
Jih-Gaw Lin ◽  
Cheng-Nan Chang ◽  
Jer-Ren Wu ◽  
Ying-Shih Ma

We investigated the effects of pH, ionic strength, catalyst, and initial concentration on both decomposition of 2-chlorophenol (2-cp) and removal of total organic carbon (TOC) in aqueous solution with ultrasonic amplitude 120 μm and H2O2 (200 mg/l). When the initial concentrations of 2-cp was 100 mg/l and the pH was controlled at 3, the rate of 2-cp decomposition was enhanced up to 6.6-fold and TOC removal up to 9.8-fold over pH controlled at 11. At pH 3, the efficiency of decomposition of 2-cp was 99% but the removal of TOC was only 63%; a similar situation applied at pH 7 and 11. Hence intermediate compounds were produced and 2-cp was not completely mineralized. When the concentration of ionic strength was increased from 0.001 to 0.1 M, the rate of 2-cp decomposition was enhanced only 0.3-fold, whereas the TOC removal was not enhanced. In comparison of the effects of pH and ionic strength, pH had greater influence on both 2-cp decomposition and TOC removal than ionic strength. The effect of a catalyst (FeSO4) on decomposition of 2-cp was insignificant comparing with direct addition of H2O2. The reaction rate at a smaller initial concentration of 2-cp (10 mg/l) was more rapid than at a greater one (100 mg/l). The rate of 2-cp decomposition and TOC removal appeared to follow pseudo-first-order reaction kinetics.


Sign in / Sign up

Export Citation Format

Share Document