scholarly journals Influence of sulfating method on La–Ni–S2O82–/ZrO2–Al2O3 solid superacid catalyst for n-pentane isomerization

2020 ◽  
Vol 45 ◽  
pp. 146867831989772
Author(s):  
Haiqiang Zhao ◽  
Hua Song ◽  
Lele Zhao ◽  
Feng Li

La–Ni–S2O82–/ZrO2–Al2O3 catalysts were successfully prepared by two different methods of sulfate impregnation, and the physico-chemical properties of the catalysts were characterized by X-ray diffraction, Brunauer–Emmett–Teller analysis, Fourier transform infrared spectroscopy, pyridine adsorption–infrared spectroscopy, and X-ray photoelectron spectroscopy techniques. Catalytic activities were evaluated in a fixed-bed flow reactor using n-pentane isomerization as the probe reaction. Compared with catalyst La–Ni–S2O82–/ZrO2–Al2O3-I, prepared by the traditional impregnation method, the catalyst La–Ni–S2O82–/ZrO2–Al2O3-W, prepared by the incipient-wetness impregnation method, possessed higher pore volume, pore size, sulfur content, and stronger Brønsted acid sites. The catalytic activity for La–Ni–S2O82–/ZrO2–Al2O3-W was maintained at around 56% within 3000 min with an isopentane selectivity of 88% which showed much greater stability than that of La–Ni–S2O82–/ZrO2–Al2O3-I. This can be attributed to the fact that (1) the large pore size and pore volume of La–Ni–S2O82–/ZrO2–Al2O3-W can largely suppress carbon deposition and (2) the more numerous and stronger Brønsted acid sites for La–Ni–S2O82–/ZrO2–Al2O3-W guaranteed to provide enough acid sites for isomerization during the reaction process.

2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Norsahika Mohd Basir ◽  
Hendrik Oktendy Lintang ◽  
Salasiah Endud

Porous clay heterostructures (PCH) was derived from natural kaolin through intercalation with cationic potato starch as the template. Leaching of PCH was performed in concentrated acid solutions consisting of HCl and H2SO4. Phosphotungstic acid (HPW) supported on PCH and modified PCH were synthesized by wet impregnation method. The resulting PCH showed remarkable increase in surface area starting from 15 m2g–1 for the parent kaolin to maximium value of 725 m2g–1 for PCH. Acidity studies by pyridine adsorption and FTIR spectra showed that both natural kaolin and PCH possessed strong Lewis acid sites. In contrast, the surface acidity of HPW supported on PCH was significantly enhanced and comprising mainly Brönsted acid sites. The correlation between the Brönsted to Lewis acid ratios (B/L) and either conversion or selectivity of the catalysts has been studied in Friedel-Crafts acylation of anisole. The PCH/30HPW catalyst with the highest number of Brönsted acid sites showed excellent catalytic activity giving 86% conversion of anisole and high selectivity of 95% toward p-methoxypropiophenone.


2016 ◽  
Vol 846 ◽  
pp. 712-716 ◽  
Author(s):  
Salasiah Endud ◽  
Norsahika Mohd Basir ◽  
Hendrik O. Lintang

Porous montmorillonite (PMMT) was derived from natural montmorillonite (MMT) through functionalization using 3-aminopropyltrimethoxysilane (APTMS) and intercalation with cationic potato starch as the template. Phosphotungstic acid (HPW) supported on PMMT was synthesized by wet impregnation method. The resulting PMMT showed remarkable increase in surface area from the low value of 191 m2g‒1 for parent MMT to the high value of 930 m2g‒1 for PMMT. Acidity studies by pyridine adsorption followed by FTIR spectroscopy showed that both MMT and PMMT possessed strong Lewis acid sites. In contrast, the surface acidity of HPW incorporated into PMMT was shown to be significantly enhanced by forming mainly Brönsted acid sites. The catalytic activity of these materials was evaluated in the Friedel-Crafts acylation of anisole with propionic anhydride. The PMMT/30HPW catalyst which possesses the highest number of Brönsted acid sites showed excellent catalytic activity giving selectivity as high as 95% toward the main product, p-methoxypropiophenone.


2001 ◽  
Vol 105 (10) ◽  
pp. 1947-1955 ◽  
Author(s):  
B. J. Campbell ◽  
A. K. Cheetham ◽  
T. Vogt ◽  
L. Carluccio ◽  
W. O. Parker ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Emanuele Grifoni ◽  
GiovanniMaria Piccini ◽  
Johannes A. Lercher ◽  
Vassiliki-Alexandra Glezakou ◽  
Roger Rousseau ◽  
...  

AbstractChemical reactivity and sorption in zeolites are coupled to confinement and—to a lesser extent—to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on Well-Tempered Metadynamics and a recently developed set of collective variables. While at low water content (1–2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n > 2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the concentration of waters in the pores, favors proton solvation and is independent of the pore size/shape.


1992 ◽  
Vol 46 (10) ◽  
pp. 1474-1476 ◽  
Author(s):  
Edilson V. Benvenutti ◽  
Yoshitaka Gushikem ◽  
Celso U. Davanzo

Brønsted acid sites inside the 0.3-nm-diameter cavities of pyrochlore antimony (V) oxide were detected with the use of pyridine as a probe molecule, and following the appearance of pyridinium ions by infrared spectroscopy (8 a and 19 b modes). The pyridine molecule is larger than the cavities' windows and can only bind acid sites when the oxide is strongly hydrated. This observation indicates that the protons are free to migrate to the surface.


2020 ◽  
Author(s):  
Emanuele Grifoni ◽  
GiovanniMaria Piccini ◽  
Johannes Lercher ◽  
Vassiliki-Alexandra Glezakou ◽  
Roger Rousseau ◽  
...  

Abstract Chemical reactivity and sorption in zeolites is coupled to confinement and - to a lesser extent- to the acid strength of Brønsted acid sites (BAS). In presence of water the zeolite Brønsted acid sites eventually convert into hydronium ions. The gradual transition from zeolite Brønsted acid sites to hydronium ions conversion in zeolites of varying pore size is examined by ab initio molecular dynamics combined with enhanced sampling based on well-tempered metadynamics and a recently developed set of collective variables. While at low water content (1-2 water/BAS) the acidic protons prefer to be shared between zeolites and water, higher water contents (n>2) invariably lead to solvation of the protons within a localized water cluster adjacent to the BAS. At low water loadings the standard free energy of the formed complexes is dominated by enthalpy and is associated with the acid strength of the BAS and the space around the site. Conversely, the entropy increases linearly with the concentration of waters in the pores, favors proton solvation and is independent of the pore size/shape.


2016 ◽  
Vol 128 (20) ◽  
pp. 6085-6088 ◽  
Author(s):  
Benedict T. W. Lo ◽  
Lin Ye ◽  
Jin Qu ◽  
Junliang Sun ◽  
Junlin Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document