PHOSPHOTUNGSTIC ACID SUPPORTED ON ACID-LEACHED POROUS KAOLIN FOR FRIEDEL-CRAFTS ACYLATION OF ANISOLE

2015 ◽  
Vol 76 (13) ◽  
Author(s):  
Norsahika Mohd Basir ◽  
Hendrik Oktendy Lintang ◽  
Salasiah Endud

Porous clay heterostructures (PCH) was derived from natural kaolin through intercalation with cationic potato starch as the template. Leaching of PCH was performed in concentrated acid solutions consisting of HCl and H2SO4. Phosphotungstic acid (HPW) supported on PCH and modified PCH were synthesized by wet impregnation method. The resulting PCH showed remarkable increase in surface area starting from 15 m2g–1 for the parent kaolin to maximium value of 725 m2g–1 for PCH. Acidity studies by pyridine adsorption and FTIR spectra showed that both natural kaolin and PCH possessed strong Lewis acid sites. In contrast, the surface acidity of HPW supported on PCH was significantly enhanced and comprising mainly Brönsted acid sites. The correlation between the Brönsted to Lewis acid ratios (B/L) and either conversion or selectivity of the catalysts has been studied in Friedel-Crafts acylation of anisole. The PCH/30HPW catalyst with the highest number of Brönsted acid sites showed excellent catalytic activity giving 86% conversion of anisole and high selectivity of 95% toward p-methoxypropiophenone.

2016 ◽  
Vol 846 ◽  
pp. 712-716 ◽  
Author(s):  
Salasiah Endud ◽  
Norsahika Mohd Basir ◽  
Hendrik O. Lintang

Porous montmorillonite (PMMT) was derived from natural montmorillonite (MMT) through functionalization using 3-aminopropyltrimethoxysilane (APTMS) and intercalation with cationic potato starch as the template. Phosphotungstic acid (HPW) supported on PMMT was synthesized by wet impregnation method. The resulting PMMT showed remarkable increase in surface area from the low value of 191 m2g‒1 for parent MMT to the high value of 930 m2g‒1 for PMMT. Acidity studies by pyridine adsorption followed by FTIR spectroscopy showed that both MMT and PMMT possessed strong Lewis acid sites. In contrast, the surface acidity of HPW incorporated into PMMT was shown to be significantly enhanced by forming mainly Brönsted acid sites. The catalytic activity of these materials was evaluated in the Friedel-Crafts acylation of anisole with propionic anhydride. The PMMT/30HPW catalyst which possesses the highest number of Brönsted acid sites showed excellent catalytic activity giving selectivity as high as 95% toward the main product, p-methoxypropiophenone.


2008 ◽  
pp. 4631 ◽  
Author(s):  
Selvedin Telalović ◽  
Jeck Fei Ng ◽  
Rajamanickam Maheswari ◽  
Anand Ramanathan ◽  
Gaik Khuan Chuah ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 2531-2535 ◽  
Author(s):  
Yousuke Ooyama ◽  
Koji Uenaka ◽  
Takafumi Sato ◽  
Naoyuki Shibayama ◽  
Joji Ohshita

Effective and convenient co-sensitization method for DSSC have been newly developed by employing two kinds of D–π–A dyes with pyridyl group capable of adsorbing at the Brønsted acid sites and the Lewis acid sites on TiO2 surface.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2015
Author(s):  
Łukasz Kuterasiński ◽  
Małgorzata Smoliło-Utrata ◽  
Joanna Kaim ◽  
Wojciech Rojek ◽  
Jerzy Podobiński ◽  
...  

The aim of the present paper is to study the speciation and the role of different active site types (copper species and Brønsted acid sites) in the direct synthesis of furan from furfural catalyzed by copper-exchanged FAU31 zeolite. Four series of samples were prepared by using different conditions of post-synthesis treatment, which exhibit none, one or two types of active sites. The catalysts were characterized by XRD, low-temperature sorption of nitrogen, SEM, H2-TPR, NMR and by means of IR spectroscopy with ammonia and CO sorption as probe molecules to assess the types of active sites. All catalyst underwent catalytic tests. The performed experiments allowed to propose the relation between the kind of active centers (Cu or Brønsted acid sites) and the type of detected products (2-metylfuran and furan) obtained in the studied reaction. It was found that the production of 2-methylfuran (in trace amounts) is determined by the presence of the redox-type centers, while the protonic acid sites are mainly responsible for the furan production and catalytic activity in the whole temperature range. All studied catalysts revealed very high susceptibility to coking due to polymerization of furfural.


2015 ◽  
Vol 119 (19) ◽  
pp. 10427-10438 ◽  
Author(s):  
Amber Janda ◽  
Bess Vlaisavljevich ◽  
Li-Chiang Lin ◽  
Shaama Mallikarjun Sharada ◽  
Berend Smit ◽  
...  

2003 ◽  
Vol 125 (46) ◽  
pp. 13964-13965 ◽  
Author(s):  
Weiguo Song ◽  
David M. Marcus ◽  
Saifudin M. Abubakar ◽  
Emma Jani ◽  
James F. Haw

Sign in / Sign up

Export Citation Format

Share Document