surface acidity
Recently Published Documents


TOTAL DOCUMENTS

768
(FIVE YEARS 140)

H-INDEX

63
(FIVE YEARS 7)

Author(s):  
Michael D Tyka ◽  
Christopher Van Arsdale ◽  
John C Platt

To remain below 2◦C of warming, most IPCC pathways call for active CO2 removal (CDR). On geological timescales, ocean uptake regulates atmospheric CO2 concentration, with two homeostats driving CO2 uptake:...


2022 ◽  
pp. 105537
Author(s):  
Jingong Cai ◽  
Jiazong Du ◽  
Qian Chao ◽  
Xiang Zeng ◽  
Hailun Wei

2022 ◽  
Author(s):  
Zixiang Cui ◽  
Yidi Xue ◽  
Yongqiang Xue ◽  
Mengying Wang ◽  
Jiaojiao Chen ◽  
...  

The desorption kinetic parameters (the desorption activation energy (Ed) and the desorption pre-exponential factor (A)) and the surface acidity (the strength and number of acid sites) of spherical and octahedral...


2021 ◽  
Vol 11 (1) ◽  
pp. 191-203
Author(s):  
Toyin Shittu ◽  
Mohammednoor Altarawneh

Abstract Catalytic capacity of ceria mainly stems from a facile switch in the Ce oxidation states from +4 to +4 − x. While various experimental and computational studies pinpoint the reduction chemistry of Ce atom through the creation of oxygen vacancies, the analogous process when ceria surface is decorated with cations remains poorly understood. Where such results are available, a synergy between experimental and first principle calculation is scarce. Niobium materials are evolving and their use in catalysis is being widely investigated due to their high surface acidity and thermal and chemical stability. This study aims to report structural and electronic properties of various configurations of mixed Ce–Nb oxides and elaborates on factors that underpin potential catalytic improvements. Evaluations of the samples through X-ray diffraction (XRD), Fourier transform infrared (FTIR), N2-adsorption–desorption, scanning electron microscope (SEM), energy dispersive spectroscope (EDS), and thermogravimetric (TGA) analyses are examined and discussed. First principles density functional theory (DFT) calculations provide structural features of the Ce–Nb solutions at low concentration of Nb via computing atomic charge distribution. Contraction in the lattice parameter after Nb doping was confirmed with both XRD and DFT results. SEM analysis reveals particle growth at the loading of 50 wt%. FTIR results established the Ce–Nb–O bond at 1,100 cm−1 and the TGA analysis confirms the thermal stability of Nb-doped ceria. Tetrahedral O atoms demonstrate an increase in electronegativity and this in turn facilitates catalytic propensity of the material because the O atoms will exhibit higher affinity for adsorbed reactants. Cerium oxide (CeO2) after Nb doping displays a noticeable band gap narrowing, confirming the possible improvement in the catalytic behavior. The 4d states of the Niobium pentoxide (Nb2O5) is found to fill up the 4f states of CeO2 around the Fermi energy level promoting electrons excitation in the CeO2. Reported electronic, structural, and thermal characteristics herein indicate promising catalytic applications of niobium-promoted ceria.


Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4
Author(s):  
Tong Zhang ◽  
Wenge Qiu ◽  
Hongtai Zhu ◽  
Xinlei Ding ◽  
Rui Wu ◽  
...  

Developing a catalyst with high SO2 and H2O resistance to achieve high-performance CO oxidation for specific industrial applications is highly desirable. Here, three catalysts were prepared using cerium titanium composite oxide (CeTi), molybdophosphate with Keggin structure-modified CeTi (Keg-CeTi), and molybdophosphate without Keggin structure-modified CeTi (MoP-CeTi) as supports, and their sulfur and water resistance in CO oxidation were tested. The characterization of XRD, BET, SO2/H2O-DRIFTS, XPS, TEM, SEM, NH3/SO2-TPD, H2-TPR, and ICP techniques revealed that the high SO2 and H2O resistance of Pt/Keg-CeTi in CO oxidation was related to its stronger surface acidity, better reduction of surface cerium and molybdenum species, and lower SO2 adsorption and transformation compared to Pt/CeTi and Pt/MoP-CeTi.


2021 ◽  
Vol 15 (4) ◽  
pp. 465-474
Author(s):  
Tetiana Dontsova ◽  
◽  
Anastasiya Kutuzova ◽  
Ahmad Hosseini-Bandegharaei ◽  
◽  
...  

The article considers the influence of precursor type and sol-gel synthesis conditions of TiO2 on its properties. The obtained TiO2 samples were characterized by X-ray diffraction methods, electron microscopy, as a result of which it was found that all the obtained TiO2 powders have the crystallite size in a nanorange of 2.5–17 nm. It was shown that sorption-photocatalytic properties of TiO2 significantly depend on a phase composition, surface acidity, specific surface area and porosity. It was found that the amorphous TiO2 has improved adsorption properties, while crystalline TiO2 is characterized by enhanced photocatalytic properties. Determined acidic nature of the TiO2 surface explains the better sorption and photocatalysis relative to the cationic dye.


Reactions ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 457-472
Author(s):  
Jasmine Kaur ◽  
Sundaramurthy Vedachalam ◽  
Philip Boahene ◽  
Ajay K. Dalai

Pyrolysis oil derived from waste tires consists of sulfur content in the range of 7000 to 9000 ppm. For use in diesel engines, its sulfur content must be lowered to 10 to 15 ppm. Though conventional hydrodesulfurization is suitable for the removal of sulfur from tire pyrolysis oil, its high cost provides an avenue for alternative desulfurization technologies to be explored. In this study, oxidative desulfurization (ODS), a low-cost technology, was explored for the desulfurization of tire pyrolysis oil. Two categories of titanium-incorporated mesoporous supports with 20 wt% loaded heteropoly molybdic acid catalyst (HPMo/Ti-Al2O3 and HPMo/Ti-TUD-1) were developed and tested for ODS of tire pyrolysis oil at mild process conditions. Catalysts were characterized by X-ray diffraction, BET-N2 physisorption, and X-ray photoelectron spectroscopy (XPS). The incorporation of Ti into Al2O3 and TUD-1 frameworks was confirmed by XPS. The surface acidity of catalysts was studied by the temperature-programmed desorption of NH3 and pyridine FTIR analyses. HPMo/Ti-Al2O3 and HPMo/Ti-TUD-1 catalysts contained both Lewis and Brønsted acid sites. The presence of titanium in catalysts was found to promote the ODS activity of phosphomolybdic acid. The Ti-TUD-1-supported catalysts performed better than the Ti-Al2O3-supported catalysts for the ODS of tire pyrolysis oil. Hydrogen peroxide and cumene peroxide were found to be better oxidants than tert-butyl hydroperoxide for oxidizing sulfur compounds of tire pyrolysis oil. Process parameter optimization by the design of experiments was conducted with an optimal catalyst along with the catalyst regeneration study. An ANOVA statistical analysis demonstrated that the oxidant/sulfur and catalyst/oil ratios were more significant than the reaction temperature for the ODS of tire pyrolysis oil. It followed the pseudo-first-order kinetics over HPMo/Ti-TUD-1.


2021 ◽  
Vol 5 (4) ◽  
pp. 47
Author(s):  
Karolina Kędra ◽  
Marzena Łazarczyk ◽  
Tajana Begović ◽  
Danijel Namjesnik ◽  
Karolina Lament ◽  
...  

Organic matter (OM) interactions with minerals are essential in OM preservation against decomposition in the environment. Here, by combining potentiometric and electrophoretic measurements, we probed the mode of coordination and the role of pH-dependent electrostatic interactions between organic acids and an iron oxide surface. Specifically, we show that malonate ions adsorbed to a hematite surface in a wide pH window between 3 and 8.7 (point of zero charge). The mode of interactions varied with this pH range and depended on the acid and surface acidity constants. In the acidic environment, hematite surface potential was highly positive (+47 mV, pH 3). At pH < 4 malonate adsorption reduced the surface potential (+30 mV at pH 3) but had a negligible effect on the diffuse layer potential, consistent with the inner-sphere malonate complexation. Here, the specific and electrostatic interactions were responsible for the malonate partial dehydration and surface accumulation. These interactions weakened with an increasing pH and near PZC, the hematite surface charge was neutral on average. Adsorbed malonates started to desorb from the surface with less pronounced accumulation in the diffuse layer, which was reflected in zeta potential values. The transition between specific and non-specific sorption regimes was smooth, suggesting the coexistence of the inner- and outer-sphere complexes with a relative ratio that varied with pH.


Sign in / Sign up

Export Citation Format

Share Document