Oblique interaction between water waves and a partially submerged rectangular breakwater

Author(s):  
R. B. Kaligatla ◽  
N. M. Prasad ◽  
S. Tabssum

A problem of oblique wave scattering by a rectangular breakwater floating in water of uneven depth is solved by applying matched eigenfunction expansion method. Three positions of breakwater are considered. The width and draft of breakwater are assumed to be finite, whereas its length is infinite. Breakwater is studied in the settings of without backwall and with a backwall. By using matching conditions at interface boundaries and making use of orthogonal property of eigenfunctions, the problem is converted to a system of algebraic equations. Breakwater’s position is proposed for which wave reflection, transmission, and force on wall are optimized. The breakwater with certain width and draft reflects more wave energy than the one with zero-draft. In the case of absence of wall, breakwater at lee side to the step induces least transmission of waves. In the case of presence of wall, suitable position of breakwater is suggested based on a range of wave frequency to mitigate force on wall. Optimum distances between wall and breakwater are found to attain less force on wall. Using Green’s identity, energy balance relation is derived to check accuracy in results. The findings are likely to be useful to assess the performance of a breakwater in different positions in water of uneven depth.

2011 ◽  
Vol 255-260 ◽  
pp. 166-169
Author(s):  
Li Chen ◽  
Yang Bai

The eigenfunction expansion method is introduced into the numerical calculations of elastic plates. Based on the variational method, all the fundamental solutions of the governing equations are obtained directly. Using eigenfunction expansion method, various boundary conditions can be conveniently described by the combination of the eigenfunctions due to the completeness of the solution space. The coefficients of the combination are determined by the boundary conditions. In the numerical example, the stress concentration phenomena produced by the restriction of displacement conditions is discussed in detail.


Author(s):  
Omid Nejadkazem ◽  
Ahmad Reza Mostafa Gharabaghi

This paper describes various hydraulic characteristic of double-row pile breakwaters (DPB). Applying an eigenfunction expansion method, a numerical method have been developed that can compute wave transmission, reflection, and other hydraulic characteristics. To verify the validity of developed prediction, laboratory experiments of Isaascson et al. (1999) have been utilized. Then for an efficient calculation, optimum number of necessary evanescent waves for an effective and efficient prediction is discussed for various hydraulic quantities of interest. In a nutshell, for an effective and efficient performance of the DPB, intermediate water wave and porosity range of [0.2 0.3] are recommended. Relative distance between two barriers must be set depending on significant wave length of design.


Author(s):  
Charaf Ouled Housseine ◽  
Sime Malenica ◽  
Guillaume De Hauteclocque ◽  
Xiao-Bo Chen

Wave diffraction-radiation by a porous body is investigated here. Linear potential flow theory is used and the associated Boundary Value Problem (BVP) is formulated in frequency domain within a linear porosity condition. First, a semi-analytical solution for a truncated porous circular cylinder is developed using the dedicated eigenfunction expansion method. Then the general case of wave diffraction-radiation by a porous body with an arbitrary shape is discussed and solved through Boundary Integral Equation Method (BIEM). The main goal of these developments is to adapt the existing diffraction-radiation code (HYDROSTAR) for that type of applications. Thus the present study of the porous cylinder consists a validation work of (BIEM) numerical implementation. Excellent agreement between analytical and numerical results is observed. Porosity influence on wave exciting forces, added mass and damping is also investigated.


Sign in / Sign up

Export Citation Format

Share Document