scholarly journals Optimal policy for composite sensing with crowdsourcing

2020 ◽  
Vol 16 (5) ◽  
pp. 155014772092733
Author(s):  
Bei Zhao ◽  
Siwen Zheng ◽  
Jianhui Zhang

The mobile crowdsourcing technology has been widely researched and applied with the wide popularity of smartphones in recent years. In the applications, the smartphone and its user act as a whole, which called as the composite node in this article. Since smartphone is usually under the operation of its user, the user’s participation cannot be excluded out the applications. But there are a few works noticed that humans and their smartphones depend on each other. In this article, we first present the relation between the smartphone and its user as the conditional decision and sensing. Under this relation, the composite node performs the sensing decision of the smartphone which based on its user’s decision. Then, this article studies the performance of the composite sensing process under the scenario which composes of an application server, some objects, and users. In the progress of the composite sensing, users report their sensing results to the server. Then, the server returns rewards to some users to maximize the overall reward. Under this scenario, this article maps the composite sensing process as the partially observable Markov decision process, and designs a composite sensing solution for the process to maximize the overall reward. The solution includes optimal and myopic policies. Besides, we provide necessary theoretical analysis, which ensures the optimality of the optimal algorithm. In the end, we conduct some experiments to evaluate the performance of our two policies in terms of the average quality, the sensing ratio, the success report ratio, and the approximate ratio. In addition, the delay and the progress proportion of optimal policy are analyzed. In all, the experiments show that both policies we provide are obviously superior to the random policy.

2021 ◽  
Author(s):  
Shirin Akbarinasaji

Background: Bug tracking systems receive many bug reports daily. Although the software quality team aims to identify and resolve these bugs, they are never able to fix all of the reported bugs in the issue tracking system before the release deadline. However, postponing the bug fixing may have some consequences. Prioritization of bug reports will help the software manager decide which bugs to fix and which bugs to postpone. Typically, bug reports are prioritized based on the severity, priority, time and effort for fixing, customer pressure, etc. Aim: Previous studies have shown that these factors may not be appropriate for prioritization. Therefore, relying on them to automate bug prioritization might be misleading. In this dissertation, we aim to prioritize bug reports with respect to the consequence of not fixing the bugs in terms of their relative importance in the issue tracking system. Method: In order to measure the relative importance of bugs in the issue tracking system, we propose the construction of a dependency graph based on the reported dependency-blocking information in the issue tracking system. Two metrics, namely depth and degree, are used to measure the relative importance of the bugs. However, there is uncertainty in the dependency graph structure as the dependency information is discovered manually and gradually. Owing to this uncertainty, prioritization of bugs in the descending order of depth and degree may be misleading. To handle the uncertainty, we propose a novel approach of a partially observable Markov decision process (POMDP) and partially observable Monte Carlo planning (POMCP). Result: To check the feasibility of the proposed approach, we analyzed seven years of data from an open source project, Firefox, and a commercial project. We compared the proposed policy with the developer policy, maximum policy, and random policy. Conclusion: The results suggest that software practitioners do not consider the relative importance of bugs in their current practice. The proposed framework can be combined with practitioners’ expertise to prioritize bugs more effectively and take the depth and degree of bugs into account. In practice, the POMDP framework with the POMCP planner can help practitioners sequentially select bugs to minimize the connectivity of the dependency graph.


Author(s):  
Madison Clark-Turner ◽  
Christopher Amato

The decentralized partially observable Markov decision process (Dec-POMDP) is a powerful model for representing multi-agent problems with decentralized behavior. Unfortunately, current Dec-POMDP solution methods cannot solve problems with continuous observations, which are common in many real-world domains. To that end, we present a framework for representing and generating Dec-POMDP policies that explicitly include continuous observations. We apply our algorithm to a novel tagging problem and an extended version of a common benchmark, where it generates policies that meet or exceed the values of equivalent discretized domains without the need for finding an adequate discretization.


Sign in / Sign up

Export Citation Format

Share Document