scholarly journals A mobile localization method based on a robust extend Kalman filter and improved M-estimation in Internet of things

2020 ◽  
Vol 16 (9) ◽  
pp. 155014772096123
Author(s):  
Nan Hu ◽  
Chuan Lin ◽  
Fangjun Luan ◽  
Chengdong Wu ◽  
Qi Song ◽  
...  

As the key technology for Internet of things, wireless sensor networks have received more attentions in recent years. Mobile localization is one of the significant topics in wireless sensor networks. In wireless sensor network, non-line-of-sight propagation is a common phenomenon leading to the growing non-line-of-sight error. It is a fatal impact for the localization accuracy of the mobile target. In this article, a novel method based on the nearest neighbor variable estimation is proposed to mitigate the non-line-of-sight error. First, the linear regression model of the extended Kalman filter is used to obtain the residual of the distance measurement value. After that, the residual analysis is used to complete the identification of the measurement value state. Then, by analyzing the statistical characteristics of the non-line-of-sight residual, the nearest neighbor variable estimation is proposed to estimate the probability density function of residual. Finally, the improved M-estimation is proposed to locate the mobile robot. Experiment results prove that the accuracy and robustness of the proposed algorithm are better than other methods in the mixed line-of-sight/non-line-of-sight environment. The proposed algorithm effectively inhibits the non-line-of-sight error.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2945 ◽  
Author(s):  
Long Cheng ◽  
Liang Feng ◽  
Yan Wang

Wireless sensor networks (WSNs) have become a popular research subject in recent years. With the data collected by sensors, the information of a monitored area can be easily obtained. As a main contribution of WSN localization is widely applied in many fields. However, when the propagation of signals is obstructed there will be some severe errors which are called Non-Line-of-Sight (NLOS) errors. To overcome this difficulty, we present a residual analysis-based improved particle filter (RAPF) algorithm. Because the particle filter (PF) is a powerful localization algorithm, the proposed algorithm adopts PF as its main body. The idea of residual analysis is also used in the proposed algorithm for its reliability. To test the performance of the proposed algorithm, a simulation is conducted under several conditions. The simulation results show the superiority of the proposed algorithm compared with the Kalman Filter (KF) and PF. In addition, an experiment is designed to verify the effectiveness of the proposed algorithm in an indoors environment. The localization result of the experiment also confirms the fact that the proposed algorithm can achieve a lower localization error compared with KF and PF.


Author(s):  
Subharthi Banerjee ◽  
Michael Hempel ◽  
Hamid Sharif

Railroad environments are generally considered to be among the most dynamic workplace environments, even with constant improvement efforts by the railroad industry. While there has been great progress in equipment safety, personnel safety is a significantly harder challenge. These challenges are primarily derived from the presence of heavy moving machinery in close proximity to personnel and the difficulty of designing reliable wearable protection devices. Additionally, variable weather conditions, challenging walking conditions (ballast, trip hazards, etc.), and difficulty to focus on environment, moving objects, and on tasks at hand place the employees in constant peril. Therefore, our survey is focused on exploring solutions for protecting employees through unified system modeling and design that makes the employee integral to the process and results in personal protective devices that work with the environment and the employee, not against them. The optimal system design integrates not only protection of the employees from falls, unsafe practices, or collisions, but also aids in resource planning, safe operation and accounting of “near-miss” situations. In recent years the railroads have made significant investments in process automation and monitoring solutions such as Wireless Sensor Networks. These technologies are becoming increasingly cloud-connected and autonomous. They provide a plethora of information about equipment positions, movement, railcar lading, and many other factors, all of which are highly useful in the design and implementation of a railyard worker protection system. They allow us to predict position and movement, and can thus be used to provide effective proximity detection and alerting in some railyard regions where these systems are installed. Additionally, we discuss several technologies addressing near-collision, fall, and proximity situations through RF and non-RF-based techniques. The railroad industry has been advancing efforts leveraging these technologies to improve the safety of their workers. However, there are also many challenges that remain largely unaddressed. For example, in railroads, a detailed and exhaustive causation analysis for worker incidents has yet to be conducted. Therefore, in an environment like a railyard there is no solution to detect or prevent Employee on Duty (EOD) fall, collision, or health issues such as dehydration, psychological issues and high blood pressure. Protective devices worn by workers is believed to be one of the most important, cost-effective, and scalable potential candidate solutions. Recent advances are making wearable wireless body area networks (WBAN) and wireless sensor networks (WSNs) that are distributed and large-scale a reality. Such distributed networks consist of wearable sensors, fixed-installation sensors and communication links between all of them. The challenges are found in selecting wearable sensors, researching reliable communication among nodes without interfering with proximity detection and suitable for high-multipath, non-line of sight channel conditions, wearable antenna designs, power supply requirements, etc. A dense, distributed, large-scale environment like a railyard requires comprehensive workspace modelling and safety analysis. Interference related to RF sensor deployment, blind spots in vision-based approaches, and wireless propagation in intra and inter-WBAN communication due to dense non-Line-of-Sight workspace environments, metallic heavy machinery and the use of RF sensors, are all individual research challenges in this domain. This paper reviews these challenges, explores potential solutions, and thus provides a comprehensive survey of a holistic system design approach for a wearable railyard worker protection system that is unobtrusive, effective, and reliable.


2017 ◽  
Vol 13 (8) ◽  
pp. 155014771772465 ◽  
Author(s):  
Qiyue Li ◽  
Baoyu Chu ◽  
Zhong Wu ◽  
Wei Sun ◽  
Liangfeng Chen ◽  
...  

Sensor node localization is a crucial aspect of many location-related applications that utilize wireless sensor networks. Among the many studies in the literature, multidimensional scaling-based localization techniques have been proven to be efficient, obtaining high accuracy with lower information requirements. However, when applied to large-scale wireless sensor networks with coverage holes, which are common in many scenarios, such as underground mines, the transmission path can become deviated, degrading the localization performance of this type of connectivity-based technique. Furthermore, in such complex wireless environments, non-line-of-sight reference objects, the presence of obstacles and signal fluctuations change the communication range and make it difficult to obtain an accurate position. In this article, we present a anchor-free localization scheme for large-scale wireless sensor networks called the ranging and multidimensional scaling–based localization scheme. We use ranging and non-line-of-sight error mitigation techniques to estimate accurate distances between each node pair and attempt to find inflection nodes using a novel flooding protocol to correct transmission paths that have become deviated by a coverage hole. Moreover, we replace the singular value decomposition with an iterative maximum gradient descent method to reduce the computational complexity. The results of the simulations and experiments show that our scheme performs well on wireless sensor networks with different coverage holes and is robust to varying network densities.


Sign in / Sign up

Export Citation Format

Share Document