scholarly journals Resilient asynchronous H∞ control designed for discrete-time Markov jump systems: Static output feedback case

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401774770
Author(s):  
Xiao Lu ◽  
Lei Yang ◽  
Haixia Wang ◽  
Yuxia Li

This article is concerned with the problem of resilient asynchronous H∞ static output feedback control for discrete-time Markov jump linear systems. By Finsler’s Lemma, and with the help of two sets of slack variables, the product terms of system matrices and Lyapunov matrices are decoupled. Resilient asynchronous controller is designed to improve the robustness of the controller and overcome the drawback that the controller cannot get the information of the system’s mode. The controller that makes sure the closed-loop system is stochastically stable and with prescribed H∞ performance is designed. The bilinear matrix inequalities are given as the sufficient conditions for the controller design, which can be solved using linear matrix inequalities along with line search. This control strategy can be used in many practical application fields, such as robot control, aircraft, and traffic control.

2018 ◽  
Vol 28 (02) ◽  
pp. 1950023 ◽  
Author(s):  
Redouane Chaibi ◽  
Ismail Er Rachid ◽  
El Houssaine Tissir ◽  
Abdelaziz Hmamed

This paper is concerned with finite-frequency static output feedback (SOF) [Formula: see text] control for a class of continuous-time Takagi–Sugeno (T–S) fuzzy systems. With the aid of the generalized Kalman–Yakubovich–Popov (GKYP) lemma, sufficient conditions for the existence of the finite-frequency SOF [Formula: see text] control are presented. The bilinear matrix inequalities are converted to a set of linear matrix inequalities, with the aid of some special derivations. Two practical examples are given to demonstrate the effectiveness of the proposed method.


2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Selma Ben Attia ◽  
Salah Salhi ◽  
Mekki Ksouri

This paper concerns static output feedback design of discrete-time linear switched system using switched Lyapunov functions (SLFs). A new characterization of stability for the switched system under arbitrary switching is first given together with -performance evaluation. The various conditions are given through a family of LMIs (Linear Matrix Inequalities) parameterized by a scalar variable which offers an additional degree of freedom, enabling, at the expense of a relatively small degree of complexity in the numerical treatment (one line search), to provide better results compared to previous one. The control is defined as a switched static output feedback which guarantees stability and -performance for the closed-loop system. A numerical example is presented to illustrate the effectiveness of the proposed conditions.


Author(s):  
Kalpana R. ◽  
Harikumar Kandath ◽  
Senthilkumar J. ◽  
Balasubramanian G. ◽  
Abhay S. Gour

The current work addresses the control of two-input two-output (TITO) Wood and Berry model of a binary distillation column. The controller design problem is formulated in terms of multivariable H∞ control synthesis. The controller structure takes the form of simplest static output feedback (SOF) control. The controller synthesis is performed using a hybrid approach of blending linear matrix inequalities (LMI) and genetic algorithm (GA). The performance of the static output feedback controller is compared with three other controllers designed for Wood and Berry model available in the literature. The first simulation study is performed for the case of tracking a unit step command in the presence of a step change in output disturbance. A second simulation study is performed for rejecting a change in sinusoidal output disturbance.


Sign in / Sign up

Export Citation Format

Share Document