miR-100 alleviates the inflammatory damage and apoptosis of H2O2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting MMP9

Vascular ◽  
2021 ◽  
pp. 170853812198985
Author(s):  
Chen Wang ◽  
Yanqin Zhang ◽  
Zhenxing Jiang ◽  
Huiling Bai ◽  
Zizhong Du

Objective Thromboangiitis obliterans is a nonatherosclerotic segmental inflammatory disease, and miR-100 plays an anti-inflammatory role in chronic inflammation. Therefore, we hypothesized that miR-100 might alleviate the inflammatory damage and apoptosis of H2O2-induced ECV304 cells and aimed to investigate the relationship between miR-100 and thromboangiitis obliterans and the related molecular mechanism. Methods Cell counting kit-8 was used to detect cell viability, and the expression of inflammatory factors and oxidative stress was measured by ELISA. TUNEL assay was used to detect the apoptosis of human umbilical vein endothelial cells after induction by H2O2. Furthermore, the interaction between miR-100 and matrix metalloproteinase-9 was verified by dual-luciferase assay. Quantitative reverse transcription polymerase chain reaction and western blot were used to detect the expression of the adhesion factors, apoptosis-related proteins and Notch pathway-related protein. Results The results revealed that miR-100 was decreased in H2O2-induced human umbilical vein endothelial cells. Overexpression of miR-100 attenuated inflammatory response and cell apoptosis in H2O2-induced human umbilical vein endothelial cells. The overexpression of miR-100 inhibited matrix metalloproteinase-9 expression in H2O2-induced human umbilical vein endothelial cells. miR-100 inhibited H2O2-induced human umbilical vein endothelial cell inflammation, oxidative stress, and cell apoptosis via inactivation of Notch signaling by targeting matrix metalloproteinase. Conclusions Our study demonstrated that miR-100 reduced the inflammatory damage and apoptosis of H2O2-induced human umbilical vein endothelial cells via inactivation of Notch signaling by targeting matrix metalloproteinase. These findings suggested that miR-100 might be a novel therapeutic target for the prevention of thromboangiitis obliterans.

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 86
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.


2007 ◽  
Vol 566 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Tsuneki ◽  
Naoto Sekizaki ◽  
Takashi Suzuki ◽  
Shinjiro Kobayashi ◽  
Tsutomu Wada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document