scholarly journals Dose–time fractionation schedules of preoperative radiotherapy and timing to surgery for rectal cancer

2020 ◽  
Vol 12 ◽  
pp. 175883592090753 ◽  
Author(s):  
Fu Jin ◽  
Huanli Luo ◽  
Juan Zhou ◽  
Yongzhong Wu ◽  
Hao Sun ◽  
...  

Chemoradiotherapy (CRT) is extensively used prior to surgery for rectal cancer to provide significantly better local control, but the radiotherapy (RT), as the other component of CRT, has been subject to less interest than the drug component in recent years. With considerable developments in RT, the use of advanced techniques, such as intensity-modulated radiotherapy (IMRT) in rectal cancer, is garnering more attention nowadays. The radiation dose can be better conformed to the target volumes with possibilities for synchronous integrated boost without increased complications in normal tissue. Hopefully, both local recurrence and toxicities can be further reduced. Although those seem to be of interest, many issues remain unresolved. There is no international consensus regarding the radiation schedule for preoperative RT for rectal cancer. Moreover, an enormous disparity exists regarding the RT delivery. With the advent of IMRT, variations will likely increase. Moreover, time to surgery is also quite variable, as it depends upon the indication for RT/CRT in the clinical practices. In this review, we discuss the options and problems related to both the dose–time fractionation schedule and time to surgery; furthermore, it addresses the research questions that need answering in the future.

2020 ◽  
Vol 32 (1) ◽  
pp. 35-42 ◽  
Author(s):  
R. Owens ◽  
S. Mukherjee ◽  
S. Padmanaban ◽  
E. Hawes ◽  
C. Jacobs ◽  
...  

2021 ◽  
Author(s):  
C.R. Hanna ◽  
F. Slevin ◽  
A. Appelt ◽  
M. Beavon ◽  
R. Adams ◽  
...  

Author(s):  
Dean Wilkinson ◽  
Kelly Mackie ◽  
Dean Novy ◽  
Frances Beaven ◽  
Joanne McNamara ◽  
...  

Abstract Introduction: The Pinnacle3 Auto-Planning (AP) package is an automated inverse planning tool employing a multi-sequence optimisation algorithm. The nature of the optimisation aims to improve the overall quality of radiotherapy plans but at the same time may produce higher modulation, increasing plan complexity and challenging linear accelerator delivery capability. Methods and materials: Thirty patients previously treated with intensity-modulated radiotherapy (IMRT) to the prostate with or without pelvic lymph node irradiation were replanned with locally developed AP techniques for step-and-shoot IMRT (AP-IMRT) and volumetric-modulated arc therapy (AP-VMAT). Each case was also planned with VMAT using conventional inverse planning. The patient cohort was separated into two groups, those with a single primary target volume (PTV) and those with dual PTVs of differing prescription dose levels. Plan complexity was assessed using the modulation complexity score. Results: Plans produced with AP provided equivalent or better dose coverage to target volumes whilst effectively reducing organ at risk (OAR) doses. For IMRT plans, the use of AP resulted in a mean reduction in bladder V50Gy by 4·2 and 4·7 % (p ≤ 0·01) and V40Gy by 4·8 and 11·3 % (p < 0·01) in the single and dual dose level cohorts, respectively. For the rectum, V70Gy, V60Gy and V40Gy were all reduced in the dual dose level AP-VMAT plans by an average of 2·0, 2·7 and 7·3 % (p < 0·01), respectively. A small increase in plan complexity was observed only in dual dose level AP plans. Findings: The automated nature of AP led to high quality treatment plans with improvement in OAR sparing and minimised the variation in achievable dose planning metrics when compared to the conventional inverse planning approach.


Sign in / Sign up

Export Citation Format

Share Document