A comprehensive evaluation of the quality and complexity of prostate IMRT and VMAT plans generated by an automated inverse planning tool

Author(s):  
Dean Wilkinson ◽  
Kelly Mackie ◽  
Dean Novy ◽  
Frances Beaven ◽  
Joanne McNamara ◽  
...  

Abstract Introduction: The Pinnacle3 Auto-Planning (AP) package is an automated inverse planning tool employing a multi-sequence optimisation algorithm. The nature of the optimisation aims to improve the overall quality of radiotherapy plans but at the same time may produce higher modulation, increasing plan complexity and challenging linear accelerator delivery capability. Methods and materials: Thirty patients previously treated with intensity-modulated radiotherapy (IMRT) to the prostate with or without pelvic lymph node irradiation were replanned with locally developed AP techniques for step-and-shoot IMRT (AP-IMRT) and volumetric-modulated arc therapy (AP-VMAT). Each case was also planned with VMAT using conventional inverse planning. The patient cohort was separated into two groups, those with a single primary target volume (PTV) and those with dual PTVs of differing prescription dose levels. Plan complexity was assessed using the modulation complexity score. Results: Plans produced with AP provided equivalent or better dose coverage to target volumes whilst effectively reducing organ at risk (OAR) doses. For IMRT plans, the use of AP resulted in a mean reduction in bladder V50Gy by 4·2 and 4·7 % (p ≤ 0·01) and V40Gy by 4·8 and 11·3 % (p < 0·01) in the single and dual dose level cohorts, respectively. For the rectum, V70Gy, V60Gy and V40Gy were all reduced in the dual dose level AP-VMAT plans by an average of 2·0, 2·7 and 7·3 % (p < 0·01), respectively. A small increase in plan complexity was observed only in dual dose level AP plans. Findings: The automated nature of AP led to high quality treatment plans with improvement in OAR sparing and minimised the variation in achievable dose planning metrics when compared to the conventional inverse planning approach.

2019 ◽  
Vol 61 (1) ◽  
pp. 134-139
Author(s):  
Osamu Tanaka ◽  
Kousei Ono ◽  
Takuya Taniguchi ◽  
Chiyoko Makita ◽  
Masayuki Matsuo

Abstract Intensity-modulated radiotherapy (IMRT) has been used for breast cancer as well as in field-in-field techniques. Few dosimetric comparison studies have been conducted using IMRT and volumetric modulated arc therapy (VMAT) for Japanese patients. We aimed to study such patients. Thirty-two patients with left-sided breast cancer were enrolled. We conducted the following five treatment plans: two field-static IMRT (2F-S-IMRT), four field-static IMRT (4F-S-IMRT), 40° dual partial arc VMAT (40d-VMAT), 80° dual partial arc VMAT (80d-VMAT) and 210° partial VMAT (210p-VMAT). We evaluated the following: level of coverage of planning target volume (PTV) of 95% for irradiation at a dose of 50 Gy (D95) and the percentage of the heart and left anterior descending artery (LAD) volume that received 10 Gy or more (V10). As a result, the coverage of 40d-VMAT for the prescribed PTV dose of D95 was significantly lower than that of the other treatment plans (P &lt; 0.05). Regarding heart V10 and LAD V10, 2F-S-IMRT, 40d-VMAT and 80d-VMAT showed significantly lower dose than the other treatment plans (P &lt; 0.05). In conclusion, among the five plans, 2F-S-IMRT is recommended for Japanese patients because of high coverage of D95 of PTV, low V10 of the heart and LAD and the monitor unit value was the lowest.


Author(s):  
Karthikeyan Kalyanasundaram ◽  
Subramani Vellaiyan

Abstract Purpose: The purpose of the study was to evaluate the impact of changes in breathing pattern inside the breath-hold window (BHW) during deep inspiration breath hold treatment for carcinoma left breast patients post-conservative surgery. Methods: Ten patients of carcinoma left breast post-conservative surgery were prospectively selected. Three sets of CT plain images were acquired, one with 5 mm deep inspiration BHW (DIBHR) and the other one with 1 mm BHW matching the lower threshold (DIBHL) and the third one with 1 mm BHW matching the upper threshold (DIBHH) as DIBHR. For all patients, forward intensity-modulated radiotherapy (FIMRT) and volumetric modulated arc therapy (VMAT) plans were generated in the 5 mm BHW CT series and the same plan being copy and pasted in other series. Target volume doses and critical structure doses were tabulated. Results: Planning target volume coverage was adequate and no significant differences were found in any CT series. Significant differences noted in average left lung V5%, V10% and V18% doses between DIBHR versus DIBHH (p values = 0·0461, 0·0283 and 0·0213, respectively) and DIBHL versus DIBHH (p values = 0·0434, 0·0484 and 0·0334, respectively) for FIMRT plans and V18% doses in DIBHR versus DIBHH (p = 0·0067) in VMAT. No differences in heart and apex of heart doses were found. Left anterior descending artery (LAD) mean doses were significant in DIBHL versus DIBHR, DIBHR versus DIBHH and DIBHL versus DIBHH (p = 0·0012, 0·0444 and 0·0048, respectively) series for FIMRT plans and DIBHR versus DIBHH and DIBHL versus DIBHH (p = 0·0341, 0·0001) for VMAT plans. Finding: The changes in the breathing pattern inside DIBH window level cause some variation in LAD doses and no other significant differences in any parameters noted, so care should be taken while treating patients with preexisting cardiac conditions.


2020 ◽  
Author(s):  
Coen A.A. Windmeijer ◽  
Arjan Bel ◽  
Rianne de Jong ◽  
Brian V. Balgobind ◽  
Marianne C. Aznar ◽  
...  

Abstract Background Image-guided radiotherapy (IGRT) enables high precision tumor treatment with potential for sparing healthy tissues. The value of pediatric IGRT is widely acknowledged, but there is no consensus on ‘best practice’. We aimed to assess clinical pediatric IGRT practice among European members of the Pediatric Radiation Oncology Society (PROS) and members of our project-based consortium.Methods A survey addressing radiotherapy preparation, planning and delivery in seven treatment sites was sent to European PROS members and/or our IGRT project-based consortium (70 institutes). Responses were collected from June-September 2018.Results Of the 42 responding institutes (response rate 60%), 33 indicated to treat children. 28/33 are photon-only institutes, 3/33 are dedicated proton (‘proton-only’) institutes and 2/33 use both. Immobilization includes facial masks (in 100% of brain, craniospinal axis (CSA) and head-and-neck (H&N) treatments), and vacuum cushions (all sites, except brain and H&N). Intensity-modulated radiotherapy and volumetric-modulated arc therapy are most frequently applied ranging from 71%-81% in respectively CSA (20/28), and extremities (21/26), followed by 3D conformal radiotherapy ranging from 36%-69% in respectively H&N (10/28), and extremities (18/26). Isotropic planning target volume (PTV) margins varied widely in brain and abdomen (range, 1-10mm). The use of in-room kilovolt cone-beam computed tomography ranges from 57%-86% in respectively CSA (16/28), and thorax (24/28). Daily online imaging is used by the majority of institutes, ranging from 85%-90% in respectively extremities (22/26) and pelvis (27/30). Offline imaging protocols are used by 14%-21% in respectively H&N (4/28) and thorax (6/28).Conclusions Our survey shows comparable practice in pre-treatment imaging, planning and treatment techniques, and IGRT application among the participating European institutes. However, wide ranges in PTV margin sizes exist, supporting the need to define international ‘best practice’ guidelines for pediatric IGRT, and to aim for consensus on optimal margin definitions in view of available IGRT facilities and workflows among institutes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yingjie Xu ◽  
Junjie Miao ◽  
Qingfeng Liu ◽  
Peng Huang ◽  
Pan Ma ◽  
...  

PurposeTreatment of multiple brain metastases with single-isocenter volumetric modulated arc therapy causes unnecessary exposure to normal brain tissue. In this study, a longitudinal grouping method was developed to reduce such unnecessary exposure.Materials and MethodsThis method has two main aspects: grouping brain lesions longitudinally according to their longitudinal projection positions in beam’s eye view, and rotating the collimator to 90° to make the multiple leaf collimator leaves conform to the targets longitudinally group by group. For 11 patients with multiple (5–30) brain metastases, two single-isocenter volumetric modulated arc therapy plans were generated using a longitudinal grouping strategy (LGS) and the conventional strategy (CVS). The prescription dose was 52 Gy for 13 fractions. Dose normalization to 100% of the prescription dose in 95% of the planning target volume was adopted. For plan quality comparison, Paddick conformity and the gradient index of the planning target volume, and the mean dose, the V100%, V50%, V25%, and V10% volumes of normal brain tissue were calculated.ResultsThere were no significant differences between the LGS and CVS plans in Paddick conformity (p = 0.374) and the gradient index (p = 0.182) of the combined planning target volumes or for V100% (p = 0.266) and V50% (p = 0.155) of the normal brain. However, the V25% and V10% of the normal brain which represented the low-dose region were significantly reduced in the LGS plans (p = 0.004 and p = 0.003, respectively). Consistently, the mean dose of the entire normal brain was 12.04 and 11.17 Gy in the CVS and LGS plans, respectively, a significant reduction in the LGS plans (p = 0.003).ConclusionsThe longitudinal grouping method can decrease unnecessary exposure and reduces the low-dose range in normal brain tissue.


2014 ◽  
Vol 32 (3_suppl) ◽  
pp. 77-77
Author(s):  
Shaakir Hasan ◽  
Anil Sethi ◽  
Jennifer Breunig ◽  
Gabriel Axelrud ◽  
William Small ◽  
...  

77 Background: Previous attempts at dose escalation in esophagus radiotherapy (RT), mostly based on older planning techniques, have not shown improved outcomes. We aimed to investigate the importance of newer, sophisticated dose algorithms and treatment techniques in escalating target dose and reducing dose to organs at risk (OAR). Methods: Treatment plans for 10 patients were retrospectively evaluated using 3D conformal radiotherapy (3DCRT), MC based intensity modulated radiotherapy (IMRT), and VMAT. Prescription dose was 45 Gy to the planning target volume (PTV) in 25 fractions followed by a 5.4 Gy boost in 3 fractions. PTV (mean±s.d. = 681±236 cc) were planned with BrainLab iPlan 4.1 software as IMRT and VMAT. Dose distributions were calculated with both pencil beam (PB) and MC algorithms. Each PTV was normalized to receive at least 95% of 50.4 Gy or 60 Gy dose. OARs were evaluated as per RTOG1010 dose guidelines. Paired t-tests were used for statistical analysis. Results: IMRT vs. 3DCRT PTV 50.4 Gy: IMRT plans decreased heart and lung average Dmean by 4.7 Gy (p = 0.053) and 1.9 Gy (p = 0.001) respectively when compared to 3DCRT. In addition, average values of lung V5, V10, and V30 also reduced by 7.1%, 5.5%, and 3.6% respectively (p < 0.05). There was a 12.1% decrease in heart V40 (p=0.053) and 3.7% reduction in liver V30 (p=0.08). PTV 60Gy: IMRT plans at 60 Gy led to lower OAR doses compared to 3DCRT at 50.4 Gy. MC based IMRT results did not significantly differ from PB, with the exception of lung V5 which was 4.4% higher (p <0.001). VMAT vs. IMRT PTV 50.4 Gy: VMAT based planning, compared to IMRT, lowered V20 (3.4%, p=0.029), V30 (1.6%, p = 0.013), and spinal cord Dmax (5.4 Gy, p = 0.001). However, lung Dmean, V5, and V10 increased by 1.2 Gy, 11.7%, 16.7% respectively (p < 0.001). PTV 60 Gy: With VMAT planning, all OAR dose parameters were within the RTOG 1010 limits, although lung V5 and V10 exceeded acceptable limits by 1.6% and 2.6% respectively. Conclusions: Compared to 3DCRT, target dose escalation with IMRT and VMAT is possible with improved OAR dose sparing, as evaluated with MC algorithms. Increased dose values for V5 and V10 as seen in MC based VMAT plans call for reassessment of RTOG 1010 guidelines.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 445-445
Author(s):  
Jason K Molitoris ◽  
Christopher Brown ◽  
Shifeng Chen ◽  
Kimberly Marter ◽  
Kristin Spaeth ◽  
...  

445 Background: Stereotactic body radiation therapy(SBRT) is increasingly used in locally advanced pancreatic cancer (LAPC). SBRT can be delivered using 3D conformal, static intensity modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT) techniques. Prior data suggest advantages of using VMAT over IMRT for single-fraction pancreas SBRT. We performed the first dosimetric comparison of IMRT with one and two arc VMAT for 5-fraction pancreas SBRT, a more commonly used regimen. Methods: We generated 5-fraction SBRT plans for 12 LAPC patients who were previously treated at our institution with standard fractionation. The prescription dose was 33 Gy delivered in 6.6 Gy fractions. Assuming breath hold, 3 plans were generated for each patient: 9-beam static IMRT, 1-arc VMAT (VMAT1), and 2-arc VMAT (VMAT2) targeting the primary tumor. Target coverage and normal tissue doses were compared between the delivery techniques. Results: Each plan met target coverage planning goals. More VMAT2 plans (100%) were able to meet all normal tissue constraints than VMAT1 (83.3%) or IMRT (75%). Duodenal dose was most lowest for VMAT2 compared to VMAT1 and IMRT for mean dose (8.66 vs. 9.00 vs. 8.99 Gy); D4% (25.9 vs. 26.6 vs. 26.3 Gy); V10Gy (38.02 vs. 39.33 vs. 40.11%), V15Gy (23.98 vs. 25.88 vs. 25.97%), V20Gy (12.73 vs. 13.84 vs. 14.95%), and V25Gy (5.96 vs. 6.85 vs. 6.78%)(all p < 0.05). The tumors closest to the duodenum had statistically significantly improved V30Gy for VMAT2 compared to VMAT1 and IMRT (both p < 0.001). VMAT1 and VMAT2 reduced dose to the stomach, spinal cord, and liver compared to IMRT; kidney dose, however, was lowest using IMRT. VMAT2 plans had the highest conformity, but required the most monitor units to deliver. Delivery time was significantly longer with IMRT, compared to VMAT1 and VMAT2 (8.25 vs. 2.16 vs. 3.33 mins). Conclusions: These data suggest that VMAT2 should be strongly considered for 5-fraction pancreas SBRT because of superior normal tissue sparing, more conformal target volume coverage, and faster treatment delivery time (compared to IMRT). Further evaluation is needed to clarify whether the dosimetric advantages of VMAT2 are clinically significant.


Author(s):  
Serena Jayne Hilman ◽  
Thomas Bird ◽  
Piotr Gieryluk ◽  
Amy Richardson ◽  
Petra Jacobs

Abstract Aims: To investigate the use of co-registration of the computerised tomography (CT) planning scan with transperineal ultrasound (TPUS) as an aid to the delineation of the clinical target volume (CTV), and the use of TPUS as a tool for inter- and intra-fractional monitoring in men with bilateral hip prostheses (b-P) undergoing prostate radiotherapy. Materials and methods: We marked the CTV of three patients with and without the co-registered TPUS images. A metal artefact reduction algorithm was utilised. Two patients were treated with intensity-modulated radiotherapy (IMRT) and one with volumetric-modulated arc therapy (VMAT). The inter- and intra-fractional monitoring details were reviewed retrospectively. Results: Clinician marking with TPUS/CT fusion improved the confidence of prostate CTV delineation leading to a consistent change in volumes across two observers. Inter- and intra-fractional monitoring was possible using TPUS as image guidance, as it is for those patients with non-prosthetic hips. Findings: Using TPUS in the radiotherapy workflow has enabled us to more confidently plan, treat and monitor patients with b-HP. Due to transperineal image acquisition, the ultrasound images are not affected by the presence of hip prostheses, which are outside the field of view.


2013 ◽  
Vol 13 (2) ◽  
pp. 189-194 ◽  
Author(s):  
James C. L. Chow ◽  
Runqing Jiang ◽  
Daniel Markel

AbstractBackgroundWe propose to use the PTV dose–volume factor (PDVF) to evaluate treatment plans of prostate volumetric modulated arc therapy (VMAT) and intensity modulated radiotherapy (IMRT).PurposePDVF was used to compare the variation of planning target volume (PTV) coverage between VMAT and IMRT because of weight loss of patient.Materials and methodsVMAT and IMRT plans of five patients (prostate volume = 32–86·5 cm3) using the 6 MV photon beams were created with the external contour reduced by depths of 0·5–2 cm to reflect the weight loss. Moreover, integral doses (volume integral of the patient dose) and prostate tumour control probability (TCP) were calculated.ResultsWe found that reduced depth resulted in PDVF decreasing 0·03 ± 4·7 × 10−4 (VMAT) and 0·04 ± 9·7 × 10−3 (IMRT) per cm for patients. The decrease of PDVF or degradation of PTV coverage was found more significant in IMRT plans than VMAT with patient size reduction. The integral dose did not change significantly between VMAT and IMRT, while the prostate TCP increased with an increase of reduced depth.ConclusionWe concluded that PDVF can be successfully used to evaluate the variation of PTV coverage because of weight loss of patient in prostate VMAT and IMRT. Degradation of PTV coverage in prostate VMAT is less significant than IMRT regarding patient size reduction.


Sign in / Sign up

Export Citation Format

Share Document