scholarly journals Anterior Cruciate Ligament Length in Pediatric Populations: An MRI Study

2021 ◽  
Vol 9 (4) ◽  
pp. 232596712110022
Author(s):  
Emily P. Tran ◽  
Aleksei B. Dingel ◽  
E. Bailey Terhune ◽  
Nicole A. Segovia ◽  
Brian Vuong ◽  
...  

Background: As regards anterior cruciate ligament (ACL) reconstruction (ACLR), graft diameter has been identified as a major predictor of failure in skeletally mature patients; however, this topic has not been well-studied in the higher risk pediatric population. Hamstring tendon autograft configuration can be adjusted to increase graft diameter, but tendon length must be adequate for ACLR. Historical parameters of expected tendon length have been variable, and no study has quantified pediatric ACL morphology with other osseous parameters. Purpose: To develop magnetic resonance imaging (MRI)–derived predictors of native ACL graft length in pediatric patients so as to enhance preoperative planning for graft preparation in this skeletally immature patient population. Study Design: Cross-sectional study; Level of evidence, 3. Methods: MRI scans of 110 patients were included (64 girls, 46 boys; median age, 10 years; range, 1-13 years). Patients with musculoskeletal diseases or prior knee injuries were excluded. The following measurements were taken on MRI: ACL length; sagittal and coronal ACL inclination; intercondylar notch width and inclination; and femoral condyle depth and width. Associations between these measurements and patient sex and age were investigated. Univariate linear regression and multivariable regression models were created for each radiographic ACL measure to compare R 2. Results: Female ACL length was most strongly associated with the depth of the lateral femoral condyle as viewed in the sagittal plane ( R 2 = 0.65; P < .001). Other statistically significant covariates of interest included distal femoral condylar width, age, and coronal notch width ( P < .05). For males, the ACL length was most strongly associated with the distal femoral condyle width as viewed in the coronal plane ( R 2 = 0.70; P < .001). Other statistically significant covariates of interest for male ACL lengths were lateral femoral condyle depth, age, and coronal notch width ( P < .05). Conclusion: In pediatric populations, femoral condylar depth/width and patient age may be valuable in assessing ACL size and determining appropriate graft dimensions and configuration for ACLRs. The use of this information to optimize graft diameter may lower the rates of ACL graft failure in this high-risk group.

2021 ◽  
Author(s):  
Miao He ◽  
Jie Li

Abstract Background Studies have shown a significant association between the radiographically measured lateral femoral condyle ratio (LFCR) and anterior cruciate ligament (ACL) injury. However, it is unclear whether the the LFCR measured by magnetic resonance imaging (MRI) is associated with risk of noncontact ACL injury. Objective 1 To investigate the effect of the LFCR on the risk of noncontact ACL injury by MRI. 2 To investigate the association of the LFCR measured by MRI with multiple bone morphological risk factors and evaluate the most sensitive risk predictors of noncontact ACL injury. Methods A total of 116 patients, including 58 subjects with noncontact ACL injury and 58 age-matched and sex-matched controls with only meniscus injury, were included in this retrospective case-control study. The LFCR, lateral tibial slope (LTS), lateral tibial height (LTH), medial tibial slope (MTS), and medial tibial depth (MTD) were measured on MRI. The differences in each index between the two groups were compared, and risk factors were screened by single-factor logistic regression analysis. Indicators with P values <0.1 were included in the logistic regression equation. The critical values and areas under the curve (AUCs) of independent risk factors were determined by receiver operating characteristic (ROC) curve analysis. Finally, the diagnostic performance of each risk factor was evaluated by the Z-test. Results A total of 116 patients who met the inclusion criteria were included in the final analysis (58 cases in the noncontact ACL injury group and 58 cases in the control group). Patients with noncontact ACL injury had a higher femoral LFCR (63.5±2.7%) than patients with simple meniscus tear. Among all the risk factors for ACL injury, the AUC for the LFCR was the largest, at 0.81 (95% CI, 0.73-0.88), and when the critical value was 61.35%, the sensitivity and specificity for the diagnosis of ACL injury were 79% and 67%, respectively. Combined with the LTH (> 2.35 mm), the diagnostic performance was improved. The AUC was 0.85 (95% CI, 0.78-0.92), the sensitivity was 0.83, and the specificity was 0.76 Conclusion This study shows that an increased LFCR is related to an increased risk of noncontact ACL injury by MRI. The LFCR and LTH are the most sensitive risk factors for noncontact ACL injury and may help clinicians identify individuals prone to ACL injury, allowing prevention and intervention measures to be applied.


Sign in / Sign up

Export Citation Format

Share Document