scholarly journals Applications of immunocolloids in light microscopy. II. Demonstration of lectin-binding sites in paraffin sections by the use of lectin-gold or glycoprotein-gold complexes.

1983 ◽  
Vol 31 (4) ◽  
pp. 547-552 ◽  
Author(s):  
J Roth

A new procedure is presented for the light microscopic demonstration of specific sugar sequences of oligosaccharides in glycoconjugates by lectins combined with the colloidal gold marker system. Tissue sections from aldehyde-fixed and paraffin embedded rat kidney were stained either in a one-step method with lectin directly bound to particles of colloidal gold or in a two-step method using non-labeled lectin and glycoprotein labeled with colloidal gold. In both methods the presence of lectin-binding sites in the tissue sections is revealed by the appearance of a red coloration that is due to the accumulation of gold particles. The high specificity of the technique is combined with a good sensitivity and resolution as demonstrated by a differential plasma membrane staining in renal epithelial cells. The lectin-gold or glycoprotein-gold complexes remain stable for months and produce a permanent nonbleaching staining.

1978 ◽  
Vol 26 (3) ◽  
pp. 163-169 ◽  
Author(s):  
J Roth ◽  
M Binder

Three markers, colloidal gold, ferritin and peroxidase, were checked for usefulness in double labeling of lectin-binding sites. The amount of various lectins for the stabilization of good sols of a different particle size was evaluated. Several lectin-gold complexes were prepared for electron microscopic labeling purposes, and the optimal amount of various lectins needed for stabilization of gold solutions of a different particle size was determined. The following combinations were investigated for their usefulness in labeling two different lectin-binding sites: lectin-gold and lectin-gold (different particle size), lectin-gold and lectin-ferritin, as well as lectin-ferritin and lectin-peroxidase. Of these combinations the latter did not give satisfactory results for double labeling. In all single and double labeling techniques with the above mentioned markers the quantitative evaluation of the number of lectin-binding sites is not feasible, but these techniques will be of considerable value for the investigation of the dynamics of different lectin-binding sites on the cell surface.


1984 ◽  
Vol 32 (10) ◽  
pp. 1075-1083 ◽  
Author(s):  
J M Lucocq ◽  
J Roth

Previous studies have demonstrated that antigens or lectin-binding sites can be localized in sections from paraffin-embedded tissues with protein A or lectins bound to colloidal gold or colloidal silver (Roth J: J Histochem Cytochem 30:691, 1982 and 31:547, 1983). In the present study the protein A-gold technique and lectin-gold complexes have been applied to semithin sections (0.5-1.5 micron) of Epon- or low temperature Lowicryl K4M-embedded rat pancreas, kidney and submandibular gland. The results show that an increase in resolution and, therefore, in amount of information can be obtained. The optimal mode of imaging was determined on sections without counterstaining. Bright-field illumination gives the maximum information about the staining signal, while phase-contrast and Nomarski differential interference contrast give predominantly structural and, to a lesser extent, staining information. Polarization epi- and transillumination microscopy is inferior in all aspects. The application of a battery of lectin-gold complexes to rat submandibular gland revealed a specific staining pattern for each lectin in acinar and excretory duct cells.


1989 ◽  
Vol 27 ◽  
pp. 82
Author(s):  
M. Narita ◽  
K. Yamashita ◽  
M. Yasuda

1988 ◽  
Vol 89 (2) ◽  
pp. 177-184 ◽  
Author(s):  
A. Velasco ◽  
J. Hidalgo ◽  
M. M�ller ◽  
G. Garcia-Herdugo

1984 ◽  
Vol 80 (6) ◽  
pp. 527-533 ◽  
Author(s):  
T. -C. Wu ◽  
M. -C. Lee ◽  
Y. -J. Wan ◽  
I. Damjanov

Sign in / Sign up

Export Citation Format

Share Document