Correlation between liver iron concentration determined by magnetic resonance imaging and serum ferritin in adolescents with thalassaemia disease

2016 ◽  
Vol 36 (3) ◽  
pp. 203-208 ◽  
Author(s):  
Ampaiwan Chuansumrit ◽  
Jiraporn Laothamathat ◽  
Nongnuch Sirachainan ◽  
Witaya Sungkarat ◽  
Pakawan Wongwerawattanakoon ◽  
...  
2005 ◽  
Vol 54 (1) ◽  
pp. 122-128 ◽  
Author(s):  
Antonio Adilton O. Carneiro ◽  
Juliana P. Fernandes ◽  
Draulio B. de Araujo ◽  
Jorge Elias ◽  
Ana L. C. Martinelli ◽  
...  

Hepatology ◽  
2017 ◽  
Vol 65 (6) ◽  
pp. 2119-2119
Author(s):  
Agustin Castiella ◽  
José M. Alústiza ◽  
Eva Zapata ◽  
Leire Zubiaurre ◽  
Pedro Otazua ◽  
...  

2017 ◽  
Vol 28 (5) ◽  
pp. 2022-2030 ◽  
Author(s):  
Gaspard d’Assignies ◽  
Anita Paisant ◽  
Edouard Bardou-Jacquet ◽  
Anne Boulic ◽  
Elise Bannier ◽  
...  

Author(s):  
Jose Alustiza ◽  
Agustin Castiella ◽  
Eva Zapata ◽  
Iratxe Urreta ◽  
Emma Salvador ◽  
...  

Determination of liver iron concentration by magnetic resonance imaging (MRI) is becoming the new technique of choice for the diagnosis of iron overload in hereditary haemochromatosis and other liver iron surcharge diseases. Determination of hepatic iron concentration obtained by liver biopsy has been the gold standard for years. The development of MRI techniques, via signal intensity ratio methods or relaxometry, has provided a non-invasive and more accurate approach to the diagnosis of liver iron overload. This article reviews the available MRI methods for the determination of liver iron concentration and also evaluates the technique for the diagnosis and quantification of iron overload in different clinical practice scenarios.


2020 ◽  
Vol 19 (3) ◽  
pp. 158-163
Author(s):  
E. E. Nazarova ◽  
D. A. Kupriyanov ◽  
G. A. Novichkova ◽  
G. V. Tereshchenko

The assessment of iron accumulation in the body is important for the diagnosis of iron overload syndrome or planning and monitoring of the chelation therapy. Excessive iron accumulation in the organs leads to their toxic damage and dysfunction. Until recently iron estimation was performed either directly by liver iron concentration and/or indirectly by measuring of serum ferritin level. However, noninvasive iron assessment by Magnetic resonance imaging (MRI) is more accurate method unlike liver biopsy or serum ferritin level test. In this article, we demonstrate the outlines of non-invasive diagnostics of iron accumulation by MRI and its specifications.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3493-3493
Author(s):  
Martin Wermke ◽  
Jan Moritz Middeke ◽  
Nona Shayegi ◽  
Verena Plodeck ◽  
Michael Laniado ◽  
...  

Abstract Abstract 3493 An increased risk for GvHD, infections and liver toxicity after transplant has been attributed to iron overload (defined by serum ferritin) of MDS and AML patients prior to allogeneic hematopoietic stem cell transplantation (allo-HSCT). Nevertheless, the reason for this observation is not very well defined. Consequently, there is a debate whether to use iron chelators in these patients prior to allo-HSCT. In fact, serum ferritin levels and transfusion history are commonly used to guide iron depletion strategies. Both parameters may inadequately reflect body iron stores in MDS and AML patients prior to allo-HSCT. Recently, quantitative magnetic resonance imaging (MRI) was introduced as a tool for direct measurement of liver iron. We therefore aimed at evaluating the accurateness of different strategies for determining iron overload in MDS and AML patients prior to allo-HSCT. Serologic parameters of iron overload (ferritin, iron, transferrin, transferrin saturation, soluble transferrin receptor) and transfusion history were obtained prospectively in MDS or AML patients prior to allo-SCT. In parallel, liver iron content was measured by MRI according to the method described by Gandon (Lancet 2004) and Rose (Eur J Haematol 2006), respectively. A total of 20 AML and 9 MDS patients (median age 59 years, range: 23–74 years) undergoing allo-HSCT have been evaluated so far. The median ferritin concentration was 2237 μg/l (range 572–6594 μg/l) and patients had received a median of 20 transfusions (range 6–127) before transplantation. Serum ferritin was not significantly correlated with transfusion burden (t = 0.207, p = 0.119) but as expected with the concentration of C-reactive protein (t = 0.385, p = 0.003). Median liver iron concentration measured by MRI was 150 μmol/g (range 40–300 μmol/g, normal: < 36 μmol/g). A weak but significant correlation was found between liver iron concentration and ferritin (t = 0.354; p = 0.008). The strength of the correlation was diminished by the influence of 5 outliers with high ferritin concentrations but rather low liver iron content (Figure 1). The same applied to transfusion history which was also only weakly associated with liver iron content (t = 0.365; p = 0.007). Levels of transferrin, transferrin saturation, total iron and soluble transferrin receptor did not predict for liver iron concentration. Our data suggest that serum ferritin or transfusion history cannot be regarded as robust surrogates for the actual iron overload in MDS or AML patients. Therefore we advocate caution when using one of these parameters as the only trigger for chelation therapy or as a risk-factor to predict outcome after allo-HSCT. Figure 1. Correlation of Liver iron content with Ferritin. Figure 1. Correlation of Liver iron content with Ferritin. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document