Retrograde strontium metasomatism in serpentinite mélange of the Kurosegawa Zone in central Kyushu, Japan

2012 ◽  
Vol 76 (3) ◽  
pp. 635-647 ◽  
Author(s):  
T. Miyazoe ◽  
M. Enami ◽  
T. Nishiyama ◽  
Y. Mori

AbstractStrontium-rich epidote, including epidote-(Sr) and epidote with major amounts of Sr (i.e. epidote containing up to 17.3 wt.% SrO), was found in pumpellyite schist and epidote blueschist in a tectonic block in the serpentinite mélange of the Kurosegawa Zone, central Kyushu, Japan. The tectonic block is 20 m wide and made primarily of lawsonite blueschist, with subordinate amounts of pumpellyite schist and epidote blueschist. The pumpellyite schist typically occurs at the edge of the block and is composed mainly of pumpellyite with subordinate amounts of strontium-poor epidote, albite and chlorite, and thin veins of fine-grained calcite and clinopyroxene. Epidote-(Sr) forms rims around strontium-poor epidote, fills fractures in strontium-poor epidote and also occurs interstitially between pumpellyite aggregates and along the boundaries between pumpellyite and calcite-clinopyroxene veins. The epidote blueschist is found between the pumpellyite schist and lawsonite blueschist, and consists mainly of sodic amphibole, epidote and titanite, with albite veining. Strontium-rich epidote occurs as rims, replacing Sr-poor epidote near the albite vein. The bulk strontium contents of the rocks are as follows: lawsonite blueschist (200 ppm), epidote blueschist (2800 ppm) and pumpellyite schist (~10,700 ppm). The chemical and petrological characteristics of the Sr-rich epidote-bearing metabasites suggest that the infiltration of a metamorphic fluid promoted extensive Sr metasomatism during the later stages of high-pressure metamorphism.

Nature ◽  
1983 ◽  
Vol 304 (5923) ◽  
pp. 257-259 ◽  
Author(s):  
Y. Yamaguchi ◽  
H. Shibakusa ◽  
K. Tomita

Magnesium ◽  
2005 ◽  
pp. 202-207
Author(s):  
J. Cizek ◽  
I. Prochazka ◽  
I. Stulikova ◽  
B. Smola ◽  
R. Kuzel ◽  
...  

2017 ◽  
Vol 704 ◽  
pp. 181-191 ◽  
Author(s):  
J. Čížek ◽  
P. Hruška ◽  
T. Vlasák ◽  
M. Vlček ◽  
M. Janeček ◽  
...  

2009 ◽  
Vol 328 (1) ◽  
pp. 705-741 ◽  
Author(s):  
Walter V. Maresch ◽  
Rolf Kluge ◽  
Albrecht Baumann ◽  
James L. Pindell ◽  
Gabriela Krückhans-Lueder ◽  
...  

2013 ◽  
Vol 2 (9) ◽  
pp. 102-115
Author(s):  
Yousif Osman Mohammad ◽  
Nabaz Rashid Hama Aziz

The Pauza ultramafic body is part of Upper Cretaceous Ophiolitic massifs of the Zagros Suture Zone, NE Iraq. The present study reveals evidence of Ultra-high pressure (UHP), and deep mantle signature of these peridotites in the Zagros Suture Zone throughout the observation of backscattered images and micro analyses which have been performed on orthopyroxen crystals in lherzolite of Pauza ultramafic rocks.Theorthopyroxen shows abundant exsolution lamellae of coarse unevenly distributed clinopyroxene coupled with the submicron uniformly distributed needles of Cr-spinel. The observed clusters of Opx–Cpx–Spl represent the decompression products of pyrope-rich garnet produced as a result of the transition from ultra-high pressure garnet peridotite to low-pressure spinel peridotite (LP). Neoblastic olivine (Fo92 – 93) with abundant multi-form Cr- spinel inclusions occurs as a fine-grained aggregate around orthopyroxene, whereas coarse olivine (Fo90-91) free from chromian-spinel is found in matrix. The similarity of the Cr-spinel lamellae orientations in both olivine and orthopyroxene, moreover, the enrichments of both Cr and Fe3+ in the Cr-spinel inclusions in neoblastic olivine relative to Cr-spinel lamellae in orthopyroxene, suggest that spinel inclusions in olivine have been derived from former Cr-spinel lamellae in orthopyroxene. Neoblastic olivine is formed by reaction of silica-poor ascending melt and orthopyroxene. It is inferred that the olivines with multi-form spinel inclusions has been formed by incongruent melting of pre-existing spinel lamellae-rich orthopyroxene.


2006 ◽  
Vol 23 (6) ◽  
pp. 1631-1633 ◽  
Author(s):  
Zhu Jin-Long ◽  
Xiao Chang-Jiang ◽  
Chi Zhen-Hua ◽  
Feng Shao-Min ◽  
Li Feng-Ying ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document