high pressure torsion
Recently Published Documents


TOTAL DOCUMENTS

1774
(FIVE YEARS 462)

H-INDEX

77
(FIVE YEARS 15)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Florian Spieckermann ◽  
Daniel Şopu ◽  
Viktor Soprunyuk ◽  
Michael B. Kerber ◽  
Jozef Bednarčík ◽  
...  

AbstractThe atomistic mechanisms occurring during the processes of aging and rejuvenation in glassy materials involve very small structural rearrangements that are extremely difficult to capture experimentally. Here we use in-situ X-ray diffraction to investigate the structural rearrangements during annealing from 77 K up to the crystallization temperature in Cu44Zr44Al8Hf2Co2 bulk metallic glass rejuvenated by high pressure torsion performed at cryogenic temperatures and at room temperature. Using a measure of the configurational entropy calculated from the X-ray pair correlation function, the structural footprint of the deformation-induced rejuvenation in bulk metallic glass is revealed. With synchrotron radiation, temperature and time resolutions comparable to calorimetric experiments are possible. This opens hitherto unavailable experimental possibilities allowing to unambiguously correlate changes in atomic configuration and structure to calorimetrically observed signals and can attribute those to changes of the dynamic and vibrational relaxations (α-, β- and γ-transition) in glassy materials. The results suggest that the structural footprint of the β-transition is related to entropic relaxation with characteristics of a first-order transition. Dynamic mechanical analysis data shows that in the range of the β-transition, non-reversible structural rearrangements are preferentially activated. The low-temperature γ-transition is mostly triggering reversible deformations and shows a change of slope in the entropic footprint suggesting second-order characteristics.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
Amanda P. Carvalho ◽  
Leonardo M. Reis ◽  
Ravel P. R. P. Pinheiro ◽  
Pedro Henrique R. Pereira ◽  
Terence G. Langdon ◽  
...  

There is a great interest in improving mechanical testing of small samples produced in the laboratory. Plane strain compression is an effective test in which the workpiece is a thin sheet. This provides great potential for testing samples produced by high-pressure torsion. Thus, a custom tool was designed with the aim to test 10 mm diameter discs processed by this technique. Finite element analysis is used to evaluate the deformation zone, stress and strain distribution, and the accuracy in the estimation of stress–strain curves. Pure magnesium and a magnesium alloy processed by high-pressure torsion are tested using this custom-made tool. The trends observed in strength and ductility agree with trends reported in the literature for these materials.


2022 ◽  
Vol 1213 (1) ◽  
pp. 012003
Author(s):  
D V Gunderov ◽  
A A Churakova ◽  
A V Sharafutdinov ◽  
V D Sitdikov ◽  
V V Astanin

Abstract A new efficient method was used to find that in the case of high-pressure torsion of commercially pure titanium, accumulation of shear strain in Ti does not occur due to slippage of anvils. Despite this, micro-hardness increases as the number of turns n increases, and Ti structure is refined more intensively. High-pressure torsion is accompanied by a high-pressure ω-phase formation. However, the content of ω-phase changes non-monotonously with an increase in the number of turns. First, while number of turns is less than n=5, the ω-phase content reaches 50%. Upon further deformation, the ω-phase content decreases to 15% for n=20. A new accumulative high-pressure torsion method is applied to commercially pure titanium for the first time. Accumulative high-pressure torsion leads to the strongest transformation of the structure and an increase in hardness, since stronger real deformation occurs due to composition of compression and torsion strain cycles.


2022 ◽  
Vol 889 ◽  
pp. 161815
Author(s):  
Yongpeng Tang ◽  
Mitsuhiro Murayama ◽  
Kaveh Edalati ◽  
Qing Wang ◽  
Satoshi Iikubo ◽  
...  

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 181
Author(s):  
Yuanyuan Dong ◽  
Zhe Zhang ◽  
Zhihai Yang ◽  
Ruixiao Zheng ◽  
Xu Chen

316LN stainless steel is a prospective structural material for the nuclear and medical instruments industries. Severe plastic deformation (SPD) combined with annealing possesses have been used to create materials with excellent mechanical properties. In the present work, a series of ultrafine-grained (UFG) 316LN steels were produced by high-pressure torsion (HPT) and a subsequent annealing process. The effects of annealing temperature on grain recrystallization and precipitation were investigated. Recrystallized UFG 316LN steels can be achieved after annealing at high temperature. The σ phase generates, at grain boundaries, at an annealing temperature range of 750–850 °C. The dislocations induced by recrystallized grain boundaries and strain-induced nanotwins are beneficial for enhancing ductility. Moreover, microcracks are easy to nucleate at the σ phase and the γ-austenite interface, causing unexpected rapid fractures.


2021 ◽  
Vol 12 (2-2021) ◽  
pp. 219-225
Author(s):  
K. A. Svyrydova ◽  
◽  
T. V. Tsvetkov ◽  
V. M. Tkachenko ◽  
A. I. Limanovskii ◽  
...  

The results of the structural studies and hardness measurements of the samples obtained by high pressure torsion processing of melt-spun ribbons of Al95.8Mn3.8Fe0.4 alloy are presented in the paper. It has been established that straining of the ribbons results in refinement of microstructure and in the increase of microstrain which leads to increase in microhardness by 2.2 times.


Author(s):  
Jiahui Dong ◽  
Nong Gao ◽  
Ying Chen ◽  
Lingfei Cao ◽  
Hui Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document