sodic amphibole
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 0)

2020 ◽  
Vol 61 (4) ◽  
Author(s):  
Paola Manzotti ◽  
Michel Ballèvre ◽  
Pavel Pitra ◽  
Benita Putlitz ◽  
Martin Robyr ◽  
...  

Abstract The sodic amphibole glaucophane is generally considered as indicative of blueschist-facies metamorphism. However, sodic amphiboles display a large range in chemical compositions, owing principally to the Fe2+Mg–1 and Fe3+Al–1 substitutions. Therefore, the whole-rock composition (namely its Na2O and FeO* content, and the Fe2+–Fe3+ ratio), strongly controls the stability field of the sodic amphiboles at the transition from greenschist- to blueschist-facies conditions. Neglecting these variables can lead to erroneous estimates of the metamorphic conditions and consequently the tectonic framework of the rocks. This paper explores the mechanisms that control the development of sodic amphibole and sodic pyroxene within the basement of the Dent Blanche Tectonic System (Western Alps), as a result of the Alpine metamorphic history. Field, petrographic and geochemical data indicate that sodic amphibole and sodic pyroxene form in different rock types: (1) in undeformed pods of ultramafic cumulates (hornblendite), sodic amphibole (magnesioriebeckite) forms coronas around magmatic pargasite; (2) metatonalite displays patches of radiating sodic (magnesioriebeckite) and calcic (actinolite) amphiboles; (3) sodic amphibole (magnesioriebeckite–glaucophane) occurs with high-Si potassic white mica (phengitic muscovite) in fine-grained (blue) schists; (4) in mylonitized granitoids (amphibole-gneiss) metasomatized along the contact with ultramafic cumulates, sodic amphibole (magnesioriebeckite–winchite) mainly forms rosettes or sheaves, generally without a shape-preferred orientation. Only locally are the needles aligned parallel to the stretching lineation. Pale green aegirine–augite is dispersed in an albite–quartz matrix or forms layers of fine-grained fibrous aggregates. The bulk-rock chemical composition of the different lithologies indicates that sodic amphibole and sodic pyroxene developed in Na- and Fe-rich systems or in a system with high Fe3+/Fe*. Thermodynamic modelling performed for different rock types (taking into account the measured Fe2O3 contents) reveals that sodic amphibole appears at ∼8 ± 1 kbar and 400–450 °C (i.e. at the transition between the greenschist- and blueschist-facies conditions) about 5 kbar lower than previous estimates. To test the robustness of our conclusion, we performed a review of sodic amphibole compositions from a variety of terranes and P–T conditions. This shows (1) systematic variations of composition with P–T conditions and bulk-rock chemistry, and (2) that the amphibole compositions reported from the studied area are consistent with those reported from other greenschist- to blueschist-facies transitions.


2020 ◽  
Vol 26 (1) ◽  
pp. 15-19
Author(s):  
John Wakabayashi

ABSTRACT Petrography of mélange matrix and clastic sedimentary rocks in coastal California reveals the occurrence of detrital serpentine and detrital asbestiform sodic amphibole (glaucophane). Many sandstones of the Franciscan Complex have small amounts of detrital serpentine, with amounts of up to several percent in some cases. Detrital amphibole, including asbestiform glaucophane, is also present in some sandstones. Whereas rare sandstones have so much detrital glaucophane that they appear blue in hand specimen (up to nearly half of the rock volume), most glaucophane-bearing sandstones lack blue color, and the detrital glaucophane is not apparent in hand specimen. Most of the occurrences of detrital glaucophane are in blueschist facies sandstones, some of which also contain neoblastic (grew in place) glaucophane, but a notable exception is a widespread prehnite-pumpellyite facies unit that crops out primarily in Sonoma and Marin Counties. The detrital mineralogy of sandstones mirrors the block and matrix compositions of Franciscan mélanges that can be thought of as scaled-up equivalents of these clastic sedimentary rocks (mega-conglomerates/sedimentary breccias). Franciscan mélanges range from having a detrital siliciclastic to a detrital serpentinite matrix, and interfingering and gradation of the two matrix types is common. These findings suggest that clastic sedimentary rocks associated with current or past active orogenic settings else-where in the world may contain naturally occurring asbestos (NOA) even if the NOA component minerals are not visible in hand specimen.


2012 ◽  
Vol 76 (3) ◽  
pp. 635-647 ◽  
Author(s):  
T. Miyazoe ◽  
M. Enami ◽  
T. Nishiyama ◽  
Y. Mori

AbstractStrontium-rich epidote, including epidote-(Sr) and epidote with major amounts of Sr (i.e. epidote containing up to 17.3 wt.% SrO), was found in pumpellyite schist and epidote blueschist in a tectonic block in the serpentinite mélange of the Kurosegawa Zone, central Kyushu, Japan. The tectonic block is 20 m wide and made primarily of lawsonite blueschist, with subordinate amounts of pumpellyite schist and epidote blueschist. The pumpellyite schist typically occurs at the edge of the block and is composed mainly of pumpellyite with subordinate amounts of strontium-poor epidote, albite and chlorite, and thin veins of fine-grained calcite and clinopyroxene. Epidote-(Sr) forms rims around strontium-poor epidote, fills fractures in strontium-poor epidote and also occurs interstitially between pumpellyite aggregates and along the boundaries between pumpellyite and calcite-clinopyroxene veins. The epidote blueschist is found between the pumpellyite schist and lawsonite blueschist, and consists mainly of sodic amphibole, epidote and titanite, with albite veining. Strontium-rich epidote occurs as rims, replacing Sr-poor epidote near the albite vein. The bulk strontium contents of the rocks are as follows: lawsonite blueschist (200 ppm), epidote blueschist (2800 ppm) and pumpellyite schist (~10,700 ppm). The chemical and petrological characteristics of the Sr-rich epidote-bearing metabasites suggest that the infiltration of a metamorphic fluid promoted extensive Sr metasomatism during the later stages of high-pressure metamorphism.


2008 ◽  
Vol 32 (3) ◽  
pp. 295-310 ◽  
Author(s):  
Michael A.W. Marks ◽  
Roberta L. Rudnick ◽  
Thomas Ludwig ◽  
Horst Marschall ◽  
Thomas Zack ◽  
...  

2005 ◽  
Vol 77 (3) ◽  
pp. 521-534 ◽  
Author(s):  
Guilherme A.R. Gualda ◽  
Silvio R.F. Vlach

An important drawback of the electron microprobe is its inability to quantify Fe3+/Fe2+ ratios in routine work. Although these ratios can be calculated, there is no unique criterion that can be applied to all amphiboles. Using a large data set of calcic, sodic-calcic, and sodic amphibole analysis from A-type granites and syenites from southern Brazil, weassess the choices made by the method of Schumacher (1997, Canadian Mineralogist, 35: 238-246), which uses the average between selected maximum and minimum estimates. Maximum estimates selected most frequently are: 13 cations excluding Ca, Na, and K (13eCNK - 66%); sum of Si and Al equal to 8 (8SiAl - 17%); 15 cations excluding K (15eK - 8%). These selections are appropriate based on crystallochemical considerations. Minimum estimates are mostly all iron as Fe2+ (all Fe2 - 71%), and are clearly inadequate. Hence, maximum estimates should better approximate the actual values. To test this, complete analyses were selected from the literature, and calculated and measured values were compared. 13eCNK and maximum estimates are precise and accurate (concordance correlation coefficient- r c <FONT FACE=Symbol>»</FONT> 0.85). As expected, averages yield poor estimates (r c = 0.56). We recommend, thus, that maximum estimates be used for calcic, sodic-calcic, and sodic amphiboles.


Sign in / Sign up

Export Citation Format

Share Document