CD22-Directed CAR T-Cell Therapy Induces Complete Remissions in CD19-Directed CAR-Refractory Large B-Cell Lymphoma

Blood ◽  
2020 ◽  
Author(s):  
John H Baird ◽  
Matthew Joshua Frank ◽  
Juliana Craig ◽  
Shabnum Patel ◽  
Jay Y Spiegel ◽  
...  

The prognosis for patients with large B-cell lymphoma (LBCL) progressing after treatment with chimeric antigen receptor (CAR) T-cell therapy targeting CD19 (CAR19) is poor. We report on the first three consecutive patients with autologous CAR19-refractory LBCL treated with a single infusion of autologous 1×106 CAR+ T-cells/kg targeting CD22 (CAR22) as part of a phase I dose escalation study. CAR22 therapy was relatively well tolerated, without any observed non-hematologic adverse events higher than grade 2. Following infusion, all three patients achieved complete remission, with all responses ongoing at the time of last follow up (mean 7.8 months, range 6-9.3). Circulating CAR22 cells demonstrated robust expansion (peak range 85.4-350 cells/µL), and persisted beyond three months in all patients with continued radiographic responses and corresponding decreases in circulating tumor DNA (ctDNA) beyond six months post-infusion. Further accrual at a higher dose level in this phase 1 dose-escalation study is ongoing and will explore the role of this therapy in patients who have failed prior CAR T-cell therapies. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT04088890)

2021 ◽  
Author(s):  
Marco Boeri ◽  
Anna G Purdum ◽  
Jessie Sutphin ◽  
Brett Hauber ◽  
James A Kaye

Aims: We evaluated physicians’ willingness to trade-off benefits, risks and time to infusion for CAR T-cell therapy for relapsed or refractory diffuse large B-cell lymphoma. Materials & methods: In a discrete-choice experiment survey, 150 US oncologists/hematologists chose between two hypothetical CAR T-cell treatments defined by six attributes. Results: Decreasing time to infusion from 113 to 16 days yielded the greatest change in preference weight (1.91). Physicians were willing to accept a >20% increase in risk of severe cytokine release syndrome and 15% increase in risk of severe neurological events in exchange for an increase in the probability of overall survival at 24 months from 40 to 55%. Conclusion: Physicians value reducing time to infusion and will accept incremental increases in serious adverse event risks to gain survival improvements.


Blood ◽  
2021 ◽  
Author(s):  
Michael D. Jain ◽  
Hua Zhao ◽  
Xuefeng Wang ◽  
Reginald Atkins ◽  
Meghan Menges ◽  
...  

Axicabtagene ciloleucel (axi-cel) is a chimeric antigen receptor (CAR) T cell therapy for relapsed or refractory large B cell lymphoma (LBCL). Here, we evaluated whether immune dysregulation, present prior to CAR-T cell therapy, associated with treatment failure. Tumor expression of interferon (IFN) signaling, high blood levels of monocytic myeloid-derived suppressor cells (M-MDSCs), and high blood IL-6 and ferritin each associated with a lack of durable response. Similar to other cancers, we found that in LBCL tumor IFN signaling is associated with the expression of multiple checkpoint ligands including PD-L1, and these were higher in patients who lacked durable responses to CAR-T therapy. Moreover, tumor IFN signaling and blood M-MDSCs associated with decreased axi-cel expansion. Finally, patients with high tumor burden had higher immune dysregulation with increased serum inflammatory markers and tumor IFN signaling. These data support that immune dysregulation in LBCL promotes axi-cel resistance via multiple mechanistic programs: insufficient axi-cel expansion associated with both circulating M-MDSC and tumor IFN signaling, that also gives rise to expression of immune checkpoint ligands.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5821-5821
Author(s):  
David G. Maloney ◽  
Fei Fei Liu ◽  
Lisette Nientker ◽  
Cathelijne Alleman ◽  
Brian Hutton ◽  
...  

Introduction: Large B-cell lymphoma (LBCL) is the most common subtype of non-Hodgkin lymphoma. Frontline treatment is curative in ~60% of patients (pts); however, ~30% of pts relapse and ~10% are refractory to frontline treatment. Treatment options for pts with relapsed/refractory (R/R) disease, especially in the third-line or greater (3L+) setting, have been primarily salvage chemotherapies (CTs). Recently, 2 CAR T cell products, axicabtagene ciloleucel (Yescarta®) and tisagenlecleucel (Kymriah®), and the antibody-drug conjugate, polatuzumab vedotin (Polivy®), were approved in the 3L setting. A systematic literature review (SLR) of R/R LBCL was conducted to identify relevant evidence on clinical outcomes in LBCL pts, including these new therapies, within the second-line and greater (2L+) or 3L+ setting, and to define the unmet medical need. Methods: This SLR was conducted in accordance with the Cochrane Handbook for Systematic Reviews of Interventions and European Union Health Technology Assessment requirements. The review identified randomized and nonrandomized/observational studies within R/R LBCL, including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma grade 3B (FL3B), primary mediastinal large B-cell lymphoma (PMBCL), DLBCL transformed from indolent lymphomas, and R/R DLBCL with secondary central nervous system (SCNS) involvement. Sources were EMBASE, MEDLINE, The Cochrane Library, and clinical conferences (ASCO, ESMO, EHA, ASH, ICML, AACR, and EORTC) from Jan 2000 to Apr 2019. Results : Following screening of 8683 database records and additional sources, 103 publications covering 78 unique studies were identified. Studies identified were characterized by line of treatment and R/R LBCL subtype (Figure). OS, PFS, DOR, OR, and safety observed from the identified studies were described. Disease subtypes, pt eligibility criteria, and length of follow-up varied notably across studies. In the 3L+ population, 11 salvage CT and 2 CAR T cell therapy studies reported survival outcomes. With salvage CT, the reported ORR across studies ranged from 0% to 54%, while CR ranged from 5.6%-31%. Median OS (mOS) ranged between 3-9 months, with one outlying study reporting mOS at 20 months. Median PFS (mPFS) reported within the salvage CT studies ranged from 2-6 months. Among CAR T cell therapies, pts treated with axicabtagene ciloleucel (n=101) reported a CR rate of 58% and median DOR (mDOR) was 11.1 months after a median follow-up of 27.1 months. mPFS was 5.9 months and mOS was not reached. At a median follow-up of 19.3 months, pts treated with tisagenlecleucel (n=115) had a CR of 40% but the mDOR was not reached. mOS was 11.1 months for all infused patients. In the 2L+ transplant-eligible population (36 studies), pts who received high-dose CT + HSCT achieved mOS between 9 months to 5 years. In the transplant noneligible population, 16 studies reported mOS between 3-20 months. Studies involving mixed transplant-eligible and noneligible populations (30 studies) reported mOS of 1-17 months. A few studies with limited sample sizes were found to report outcomes in LBCL subtypes (eg, PMBCL, SCNS lymphoma, DLBCL transformed from non-FL indolent lymphoma, FL3B). In the 3L+ setting, 1 study reported that mOS was not reached after a median of 6.6 months. In the 2L+ setting, 4 studies reported mPFS and mOS outcomes ranging between 2-9 months and 10-16 months, respectively. Among studies assessing safety of salvage CTs in R/R LBCL, neutropenia, leukocytopenia, thrombocytopenia, and infections were the most commonly reported adverse events (AEs), with neutropenia being the most reported. Among the 3 studies reporting safety outcomes of CAR T cell therapy, data suggest that hematologic AEs (possibly related to lymphodepleting CT), cytokine release syndrome, and neurotoxicity are the most reported. Conclusions : Despite the availability of new therapies for 2L+ and 3L + LBCL, examination of the current evidence has shown that there exists a high unmet need for additional therapeutic options that provide favorable benefit/risk and durable response for these patients. Furthermore, limited data are available for the rarer subtypes of LBCL. Both findings represent important treatment gaps for R/R LBCL that must be addressed in future research geared toward improvement of the current treatment landscape. Disclosures Maloney: Juno Therapeutics: Honoraria, Patents & Royalties: patients pending , Research Funding; Celgene,Kite Pharma: Honoraria, Research Funding; BioLine RX, Gilead,Genentech,Novartis: Honoraria; A2 Biotherapeutics: Honoraria, Other: Stock options . Liu:Celgene Corporation: Employment. Nientker:Celgene Corporation: Consultancy; Pharmerit Cöoperatief U.A.: Employment. Alleman:Pharmerit Cöoperatief U.A.: Employment; Celgene Corporation: Consultancy. Garcia:Celgene: Employment, Equity Ownership.


2020 ◽  
Vol 4 (19) ◽  
pp. 4898-4911 ◽  
Author(s):  
Frederick L. Locke ◽  
John M. Rossi ◽  
Sattva S. Neelapu ◽  
Caron A. Jacobson ◽  
David B. Miklos ◽  
...  

Abstract ZUMA-1 demonstrated a high rate of durable response and a manageable safety profile with axicabtagene ciloleucel (axi-cel), an anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, in patients with refractory large B-cell lymphoma. As previously reported, prespecified clinical covariates for secondary end point analysis were not clearly predictive of efficacy; these included Eastern Cooperative Oncology Group performance status (0 vs 1), age, disease subtype, disease stage, and International Prognostic Index score. We interrogated covariates included in the statistical analysis plan and an extensive panel of biomarkers according to an expanded translational biomarker plan. Univariable and multivariable analyses indicated that rapid CAR T-cell expansion commensurate with pretreatment tumor burden (influenced by product T-cell fitness), the number of CD8 and CCR7+CD45RA+ T cells infused, and host systemic inflammation, were the most significant determining factors for durable response. Key parameters differentially associated with clinical efficacy and toxicities, with both theoretical and practical implications for optimizing CAR T-cell therapy. This trial was registered at www.clinicaltrials.gov as #NCT02348216.


2019 ◽  
pp. 1-9 ◽  
Author(s):  
Stephen Tully ◽  
Zeny Feng ◽  
Kelly Grindrod ◽  
Tom McFarlane ◽  
Kelvin K.W. Chan ◽  
...  

PURPOSE The development of chimeric antigen receptor (CAR) T cells has transformed oncology treatment, with the potential to cure certain cancers. Although shown to be effective in selected populations and studies, CAR T-cell technology requires considerable health care resources, which may lead to additional wait times to access this type of treatment in future. The objective of our study was to estimate the potential impact of increasing wait times on CAR T-cell therapy effectiveness compared with standard chemotherapy for patients with relapsed/refractory diffuse large B-cell lymphoma. METHODS A health system–level discrete event simulation model was developed to project the potential impact of wait times on CAR T-cell therapy for patients with relapsed/refractory diffuse large B-cell lymphoma. Waiting queues and health states related to treatment and clinical progression were implemented. Using data from the literature, we evaluated nine scenarios of using CAR T-cell therapy with wait times ranging from 1 to 9 months. The outcome of interest was 1-year all-cause mortality. RESULTS Increasing the wait time of receiving CAR T-cell therapy from 1 to 9 months increased the predicted 1-year mortality rate from 36.1% to 76.3%. Baseline 1-year mortality was 34.0% in patients receiving CAR T-cell therapy with no wait times and 75.1% in patients treated with chemotherapy. This resulted in an increased relative mortality rate of 6.2% to 124.5% over a 1- to 9-month wait time compared with no wait time. CONCLUSION We found that modest delays in CAR T-cell therapy significantly hinder its effectiveness. Because CAR T-cell therapy offers a potential cure, it is expected that the uptake rate will be substantially increased once the therapy is regularly funded by a health care system. Wait times may be prolonged if system resource availability does not match the demand. Strategies must be developed to minimize the impact of delays and reduce complications during waiting.


2019 ◽  
Vol 25 (3) ◽  
pp. S182-S183 ◽  
Author(s):  
Noa G. Holtzman ◽  
Firas El Chaer ◽  
Pranshu Mohindra ◽  
Ashraf Badros ◽  
Saurabh Dahiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document