Curcumin Reverses Resistance to Histone Deacetylase Inhibitors In Cutaneous T-Cell Lymphoma Cells: a Potential Role for NF-κB Signaling

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3973-3973
Author(s):  
Chunlei Zhang ◽  
Xiang Zhang ◽  
Madeleine Duvic

Abstract Abstract 3973 Histone deacetylase inhibitors (HDACi), including vorinostat (SAHA), depsipeptide (FK228), panobinostat (LBH589), belinostat (PXD101), and entinostat (SNDX275), show in-vitro and clinical activity against cutaneous T-cell lymphoma (CTCL) cell lines and patients' skin lesions [Zhang & Duvic, Expert Rev Dermatol 5: 393–401, 2010]. Vorinostat and depsipeptide were recently approved [Duvic et al, Blood 109: 31-9, 2007; Olsen et al, J Clin Oncol 25: 3109-15, 2007; Piekarz et al, J Clin Oncol 27: 5410-7, 2009], at response rates of 29% and 42%, respectively, but development of resistance remains an important clinical problem. Because we have shown that curcumin, the active ingredient of turmeric, exhibits anti-cancer activity through selective induction of tumor T-cell apoptosis and inhibition of NF-κB signaling in CTCL [Zhang et al, J Invest Dermatol 130: 2110-9, 2010], we now investigated whether curcumin combined with HDACi has synergistic anti-tumor effects in CTCL. HDACi-resistant MJ, HDACi-sensitive HH and HDACi cross-resistant HH/VOR CTCL cells were treated with HDACi (panobinostat, vorinostat, or enlinostat) plus or minus curcumin for up to 48 hrs. Cell viability was examined by the MTS assay and apoptosis by FACS analysis of annexin V/PI binding populations and/or cell cycle distribution. The NF-κB signaling pathway was analyzed by electrophoretic mobility gel shift assay and Western blotting. In MJ and HH cell lines, 5 nM panobinostat induced 1.4% and 11.4% apoptosis and 10 μM curcumin induced 24.5% and 29% apoptosis compared to vehicle controls. Panobinostat combined with curcumin induced 46.9% and 83.4% apoptosis in MJ and HH cell lines, respectively. Of interest, the HDACi cross-resistant HH/VOR CTCL cells were sensitive to curcumin alone and curcumin further enhanced panobinostat-induced apoptosis by 30% in the HH/VOR CTCL cells. Moreover, panobinostat combined with curcumin synergistically suppressed the DNA binding of NF-κB and decreased protein expression of the NF-κB activator RANK and NF-κBp65. Synergism was associated with down-regulation of NF-κB-regulated anti-apoptotic proteins (bcl-2, bcl-xL, and survivin), anti-proliferative proteins (c-myc and cyclooxygenase-2), and pro-invasive protein matrix metalloproteinase-9. Similar synergism was also seen when vorinostat or entinostat was combined with curcumin. These results suggest that HDACi could be combined with curcumin to enhance apoptosis of malignant T-cells through inhibition of NF-κB signaling in CTCL. Curcumin alone and in combination with HDACi may be an attractive strategy for the treatment of HDACi-refractory CTCL patients. Disclosures: Zhang: Novartis: Research Funding. Duvic:Novartis: Research Funding.

Lymphoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Annabelle L. Rodd ◽  
Katherine Ververis ◽  
Tom C. Karagiannis

Current treatment for cutaneous T-cell lymphoma includes phototherapy, which involves either the use of narrowband ultraviolet B light or UVA in combination with a psoralen photosensitiser. Therapy typically involves administration of the photosensitiser followed by topical exposure to UVA. A different approach is extracorporeal photopheresis, an ex vivo strategy which is used for more advanced stages of disease. Further, histone deacetylase inhibitors are emerging as potent anticancer agents with suberoylanilide hydroxamic acid and depsipeptide, having received FDA approval for the treatment of cutaneous T-cell lymphoma. We have developed UVASens, an extremely potent, DNA minor groove-binding UVA sensitizer for potential use in phototherapy. We have previously demonstrated the extreme photopotency of UVASens in human erythroleukemic K562 cells. Here we have extended those studies by investigating the photopotency of UVASens in four haematological cell lines, namely, K562, T-cell leukaemic CEM-CCRF, P-glycoprotein overexpressing R100, and transformed B-lymphoblastoid cell lines (LCL) cells. In addition, we investigated the effects of suberoylanilide hydroxamic acid in combination with UVASens. Using γH2AX as the endpoint, our findings indicate that UVASens-induced phototoxicity in all four of the haematological cell lines. The addition of suberoylanilide hydroxamic acid augmented the photopotency of UVASens highlighting the potential clinical applicability of combination therapies.


2018 ◽  
Vol 28 (17) ◽  
pp. 2985-2992 ◽  
Author(s):  
Jean-François Fournier ◽  
Yushma Bhurruth-Alcor ◽  
Branislav Musicki ◽  
Jérome Aubert ◽  
Michèle Aurelly ◽  
...  

Lymphoma ◽  
2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Annabelle L. Rodd ◽  
Katherine Ververis ◽  
Tom C. Karagiannis

Cutaneous T-cell lymphoma is a term that encompasses a spectrum of non-Hodgkin’s T-cell lymphomas with primary manifestations in the skin. It describes a heterogeneous group of neoplasms that are characterised by an accumulation of malignant T cells of the CD4 phenotype that have the propensity to home and accumulate in the skin, lymph nodes, and peripheral blood. The two most common variants of cutaneous T-cell lymphoma include mycosis fungoides and the leukemic variant, the Sézary syndrome. While numerous treatments are available for cutaneous T-cell lymphoma and have shown to have success in those with patch and plaque lesions, for those patients with tumour stage or lymph node involvement there is a significant decline in response. The relatively new therapeutic option with the use of histone deacetylase inhibitors is being advanced in the hope of decreasing morbidity and mortality associated with the disease. Histone deacetylase inhibitors have been shown to induce changes in gene expression, affecting cell cycle regulation, differentiation, and apoptosis. The aim of this paper is to discuss CTCL in the context of advances in CTCL treatment, specifically with HDAC inhibitors.


Sign in / Sign up

Export Citation Format

Share Document