hdac inhibitors
Recently Published Documents


TOTAL DOCUMENTS

1433
(FIVE YEARS 481)

H-INDEX

81
(FIVE YEARS 13)

2022 ◽  
Vol 16 ◽  
pp. 101312
Author(s):  
Geetha Shanmugam ◽  
Sudeshna Rakshit ◽  
Koustav Sarkar

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 209
Author(s):  
Dusan Ruzic ◽  
Nemanja Djoković ◽  
Tatjana Srdić-Rajić ◽  
Cesar Echeverria ◽  
Katarina Nikolic ◽  
...  

The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.


2022 ◽  
Author(s):  
Nurcan Tuncbag ◽  
Seyma Unsal Beyge

Abstract Heterogeneity across tumors is the main obstacle in developing treatment strategies. Drug molecules not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored the networks modulated by several drug molecules across multiple cancer cell lines by integrating the drug targets with transcriptomic and phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks. Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing the exact mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations based on the topological separation, found literature evidence for a set of drug pairs. Overall, the network-level exploration of the drug perturbations may potentially help optimize treatment strategies and suggest new drug combinations.


2022 ◽  
Vol 23 (2) ◽  
pp. 849
Author(s):  
Markus V. Heppt ◽  
Anja Wessely ◽  
Eva Hornig ◽  
Claudia Kammerbauer ◽  
Saskia A. Graf ◽  
...  

The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 346
Author(s):  
Meilan Hu ◽  
Fule He ◽  
Erik W. Thompson ◽  
Kostya (Ken) Ostrikov ◽  
Xiaofeng Dai

Acetylation, a reversible epigenetic process, is implicated in many critical cellular regulatory systems including transcriptional regulation, protein structure, activity, stability, and localization. Lysine acetylation is the most prevalent and intensively investigated among the diverse acetylation forms. Owing to the intrinsic connections of acetylation with cell metabolism, acetylation has been associated with metabolic disorders including cancers. Yet, relatively little has been reported on the features of acetylation against the cancer hallmarks, even though this knowledge may help identify appropriate therapeutic strategies or combinatorial modalities for the effective treatment and resolution of malignancies. By examining the available data related to the efficacy of lysine acetylation against tumor cells and elaborating the primary cancer hallmarks and the associated mechanisms to target the specific hallmarks, this review identifies the intrinsic connections between lysine acetylation and cancer hallmarks and proposes novel modalities that can be combined with HDAC inhibitors for cancer treatment with higher efficacy and minimum adverse effects.


2022 ◽  
Vol 15 (1) ◽  
pp. 80
Author(s):  
Ehab Ghazy ◽  
Mohamed Abdelsalam ◽  
Dina Robaa ◽  
Raymond J. Pierce ◽  
Wolfgang Sippl

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites’ Achilles’ heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.


Author(s):  
Kayode Adewole ◽  
Adebayo Ishola ◽  
Ige Olaoye

Abstract Background Cancer is responsible for high morbidity and mortality globally. Because the overexpression of histone deacetylases (HDACs) is one of the molecular mechanisms associated with the development and progression of some diseases such as cancer, studies are now considering inhibition of HDAC as a strategy for the treatment of cancer. In this study, a receptor-based in silico screening was exploited to identify potential HDAC inhibitors among the compounds isolated from Cajanus cajan, since reports have earlier confirmed the antiproliferative properties of compounds isolated from this plant. Results Cajanus cajan-derived phytochemicals were docked with selected HDACs, with givinostat as the reference HDAC inhibitor, using AutodockVina and Discovery Studio Visualizer, BIOVIA, 2020. Furthermore, absorption, distribution, metabolism and excretion (ADME) drug-likeness analysis was done using the Swiss online ADME web tool. From the results obtained, 4 compounds; betulinic acid, genistin, orientin and vitexin, were identified as potential inhibitors of the selected HDACs, while only 3 compounds (betulinic acid, genistin and vitexin) passed the filter of drug-likeness. The molecular dynamic result revealed the best level of flexibility on HDAC1 and HDAC3 compared to the wild-type HDACs and moderate flexibility of HDAC7 and HDAC8. Conclusions The results of molecular docking, pharmacokinetics and molecular dynamics revealed that betulinic acid might be a suitable HDAC inhibitor worthy of further investigation in order to be used for regulating conditions associated with overexpression of HDACs. This knowledge can be used to guide experimental investigation on Cajanus cajan-derived compounds as potential HDAC inhibitors.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 200
Author(s):  
Maria R. Pozo ◽  
Gantt W. Meredith ◽  
Emilia Entcheva

The epigenetic landscape and the responses to pharmacological epigenetic regulators in each human are unique. Classes of epigenetic writers and erasers, such as histone acetyltransferases, HATs, and histone deacetylases, HDACs, control DNA acetylation/deacetylation and chromatin accessibility, thus exerting transcriptional control in a tissue- and person-specific manner. Rapid development of novel pharmacological agents in clinical testing—HDAC inhibitors (HDACi)—targets these master regulators as common means of therapeutic intervention in cancer and immune diseases. The action of these epigenetic modulators is much less explored for cardiac tissue, yet all new drugs need to be tested for cardiotoxicity. To advance our understanding of chromatin regulation in the heart, and specifically how modulation of DNA acetylation state may affect functional electrophysiological responses, human-induced pluripotent stem-cell-derived cardiomyocyte (hiPSC-CM) technology can be leveraged as a scalable, high-throughput platform with ability to provide patient-specific insights. This review covers relevant background on the known roles of HATs and HDACs in the heart, the current state of HDACi development, applications, and any adverse cardiac events; it also summarizes relevant differential gene expression data for the adult human heart vs. hiPSC-CMs along with initial transcriptional and functional results from using this new experimental platform to yield insights on epigenetic control of the heart. We focus on the multitude of methodologies and workflows needed to quantify responses to HDACis in hiPSC-CMs. This overview can help highlight the power and the limitations of hiPSC-CMs as a scalable experimental model in capturing epigenetic responses relevant to the human heart.


2022 ◽  
Author(s):  
Bernhard Biersack ◽  
Bianca Nitzsche ◽  
Michael Höpfner

Epigenetic mechanisms play an important role in the development and persistence of cancer, and histone deacetylase (HDAC) inhibitors are promising anticancer drugs targeting epigenetic modes. Efficient anticancer drugs for the treatment of castration-resistant prostate cancer (CRPC) are sought, and approved HDAC inhibitors have shown promising results on the one hand and severe drawbacks on the other hand. Hence, ways to break the drug resistance mechanisms of existing HDAC inhibitors as well as the design of new promising HDAC inhibitors which can overcome the disadvantages of the classic HDAC inhibitors are of great importance. In this work, HDAC inhibitors with the potential to become a mainstay for the treatment of CRPC in the future as well as suitable combination treatments of HDAC inhibitors with other anticancer drugs leading to considerable synergistic effects in treated CRPCs are discussed.


Author(s):  
Ashish H Shah ◽  
Robert Suter ◽  
Pavan Gudoor ◽  
Tara T Doucet-O’Hare ◽  
Vasileios Stathias ◽  
...  

Abstract Background Poor prognosis of glioblastoma patients and the extensive heterogeneity of glioblastoma at both the molecular and cellular level necessitates developing novel individualized treatment modalities via genomics-driven approaches. Methods This study leverages numerous pharmacogenomic and tissue databases to examine drug repositioning for glioblastoma. RNAseq of glioblastoma tumor samples from The Cancer Genome Atlas (TCGA, n=117) were compared to “normal” frontal lobe samples from Genotype-Tissue Expression Portal (GTEX, n=120) to find differentially expressed genes (DEGs). Using compound-gene expression data and drug activity data from the Library of Integrated Network-Based Cellular Signatures (LINCS, n=66,512 compounds) CCLE (71 glioma cell lines), and Chemical European Molecular Biology Laboratory (ChEMBL) platforms, we employed a summarized reversal gene expression metric (sRGES) to “reverse” the resultant disease signature for GBM and its subtypes. A multi-parametric strategy was employed to stratify compounds capable of blood brain barrier penetrance with a favorable pharmacokinetic profile (CNS-MPO). Results Significant correlations were identified between sRGES and drug efficacy in GBM cell lines in both ChEMBL(r=0.37,p<.001) and Cancer Therapeutic Response Portal (CTRP) databases (r=0.35, p<0.001). Our multiparametric algorithm identified two classes of drugs with highest sRGES and CNS-MPO: HDAC inhibitors (vorinostat and entinostat) and topoisomerase inhibitors suitable for drug repurposing. Conclusions Our studies suggest that reversal of glioblastoma disease signature correlates with drug potency for various GBM subtypes. This multiparametric approach may set the foundation for an early-phase personalized -omics clinical trial for glioblastoma by effectively identifying drugs that are capable of reversing the disease signature and have favorable pharmacokinetic and safety profiles.


Sign in / Sign up

Export Citation Format

Share Document