CD56(+)CD146(+) Cells in Normal Human Bone Marrow-Stroma Proliferated to Form Tumors in severe Combined Immunodeficiency Mice

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1328-1328
Author(s):  
Ryosuke Shirasaki ◽  
Haruko Tashiro ◽  
Yoko Oka ◽  
Tadashi Yamamoto ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 1328 Background and Aims: We reported that acute myelogenous leukemia blasts and chronic myelogenous leukemia cells converted to stromal myofibroblasts to create an environment for the proliferation of leukemic cells in vitro and in vivo. Recently, we also reported that myelogenous leukemia-derived myofibroblasts formed blastomas in non-obese diabetes severe combined immunodeficiency (NOD/SCID) mice, in which the CD56-positive cell-fraction was selectively proliferated (16th EHA). To ascertain whether normal human bone marrow-stroma-derived cells also behave like leukemia-derived cells, stromal cells were injected to NOD/SCID mice, and tumor-formation was observed. Materials and Methods: Bone marrow cells were collected from informed normal individuals, whose adherent cells were separated and were cultured for one month to eliminate monocyte/macrophage, vascular cell, and pericyte to prepare stromal myofibroblast-rich fraction. Cells were injected to NOD/SCID mice intra-venously, peritoneally, and subcutaneously (3 × 106/mice). When the tumor formation was observed or mice were dead, they were sacrificed and the engrafted cells were analyzed. Results and Discussion: Between at day 70 and 90 after injection mice were dead. Autopsy findings revealed tumor formation at subcutaneous injection sites, and cells were also infiltrated to the liver and ascitic fluid. These cells expressed CD56, CD146, and Nestin strongly, but not other lineage-specific markers including CD133; however, the ratio of CD56(+)CD146(+) fraction in the injected stromal cells was below 0.1%. When the tumor cells were cultured in vitro, they exhibited spindle-shaped appearance, and doubling time was 12 to 16 hours. They expressed c-Myc, Klf4, Nanog, Sox2, and other molecules that are expressed in an immature somatic stem cell. These observations indicate that CD56(+)CD146(+) cell-fraction in bone marrow-stroma is very immature and highly proliferative. We are now analyzing biological characteristics of this specific cell-fraction, and determining the contribution to normal hematopoiesis. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2191-2191
Author(s):  
Ryosuke Shirasaki ◽  
Haruko Tashiro ◽  
Yoko Oka ◽  
Toshihiko Sugao ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 2191 Poster Board II-168 Aims: The stroma-forming cells in a bone marrow are derived from hematopoietic stem cells. We reported previously that non-adherent leukemia blast cells converted into myofibroblasts to create a microenvironment for proliferation of leukemia blasts in vitro. In this report we demonstrate that with severe combined immunodeficiency (SCID) mouse system chronic myelogenous leukemia (CML) cells are also differentiated into myofibroblasts to contribute to a bone marrow-stroma in vivo. Materials and Methods: Bone marrow cells were collected from informed CML patients, from which mononuclear cells were separated with density-gradient sedimentation method. After discarded an adherent cell-fraction, non-adherent mononuclear cells were injected to the priory 2.5 Gray-irradiated non-obese diabetes (NOD)/SCID mice intravenously. For the inactivation of NK cells, anti-Asialo GM1 antibody was injected intra-peritoneally prior to the transplantation, and on each 11th day thereafter. Blood was collected to monitor Bcr-Abl transcript, and mice were sacrificed after chimeric mRNA was demonstrated. Bone marrow cells were obtained, and sorted with anti-human CD133 antibody and -CD106 to select CML-derived human stromal myofibroblasts referred to the in vitro data. The isolated positive fraction was further cultured, and the biological and the molecular characteristics were analyzed. Results and Discussion: When non-adherent CML cells were transplanted to NOD/SCID mice, CML cells were engrafted after 2 months. In the murine bone marrow human stromal cells were identified, in which BCR and ABL gene was fused with FISH analysis. When the parental CML cells were cultured on the CML-derived myofibroblasts, CML cells grew extensively in a vascular endothelial growth factor-A-dependent fashion. These results indicate that CML cells can create their own microenvironment for proliferation in vivo. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 17 (2) ◽  
pp. 299-300
Author(s):  
D.R. Diduch ◽  
M.R. Coe ◽  
C. Joyner ◽  
M.E. Owen ◽  
M.E. Bolander ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Ryosuke Shirasaki ◽  
Haruko Tashiro ◽  
Yoko Oka ◽  
Takuji Matsuo ◽  
Tadashi Yamamoto ◽  
...  

We recently reported that chronic myelogenous leukemia (CML) cells converted into myofibroblasts to create a microenvironment for proliferation of CML cellsin vitro. To analyze a biological contribution of CML-derived myofibroblastsin vivo, we observed the characters of leukemic nonobese diabetes/severe combined immunodeficiency (NOD/SCID) mouse. Bone marrow nonadherent mononuclear cells as well as human CD45-positive cells obtained from CML patients were injected to the irradiated NOD/SCID mice. When the chimericBCR-ABLtranscript was demonstrated in blood, human CML cells were detected in NOD/SCID murine bone marrow. And CML-derived myofibroblasts composed with the bone marrow-stroma, which produced significant amounts of human vascular endothelial growth factor A. When the parental CML cells were cultured with myofibroblasts separated from CML cell-engrafted NOD/SCID murine bone marrow, CML cells proliferated significantly. These observations indicate that CML cells make an adequate microenvironment for their own proliferationin vivo.


1999 ◽  
Vol 10 (2) ◽  
pp. 165-181 ◽  
Author(s):  
P.H. Krebsbach ◽  
S.A. Kuznetsov ◽  
P. Bianco ◽  
P. Gehron Robey

The bone marrow stroma consists of a heterogeneous population of cells that provide the structural and physiological support for hematopoietic cells. Additionally, the bone marrow stroma contains cells with a stem-cell-like character that allows them to differentiate into bone, cartilage, adipocytes, and hematopoietic supporting tissues. Several experimental approaches have been used to characterize the development and functional nature of these cells in vivo and their differentiating potential in vitro. In vivo, presumptive osteogenic precursors have been identified by morphologic and immunohistochemical methods. In culture, the stromal cells can be separated from hematopoietic cells by their differential adhesion to tissue culture plastic and their prolonged proliferative potential. In cultures generated from single-cell suspensions of marrow, bone marrow stromal cells grow in colonies, each derived from a single precursor cell termed the colony-forming unit-fibroblast. Culture methods have been developed to expand marrow stromal cells derived from human, mouse, and other species. Under appropriate conditions, these cells are capable of forming new bone after in vivo transplantation. Various methods of cultivation and transplantation conditions have been studied and found to have substantial influence on the transplantation outcome The finding that bone marrow stromal cells can be manipulated in vitro and subsequently form bone in vivo provides a powerful new model system for studying the basic biology of bone and for generating models for therapeutic strategies aimed at regenerating skeletal elements.


Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 771-780
Author(s):  
RS Schwartz ◽  
PL Greenberg

In order to evaluate the role of the stromal bone marrow microenvironment in regulating granulopoiesis, we have examined the capacity of adult human proximal hemopoietic (PH) and distal nonhemopoietic (DNH) long bone to produce colony-stimulating activity (CSA), characterized the cellular sources of CSA, and quantitated the colony-forming cells (CFU-GM) of marrow from these sites. Stromal elements were obtained from slices of cancellous bone. PH bone marrow stroma contained CFU-GM concentrations similar to aspirated PH marrow and significantly more CFU-GM than DNH bone marrow: 20.7 +/- 4.8/10(5) cells and 25.8 +/- 12.0/mg bone versus 0.81 +/- 0.34/10(5) cells and 0.02 +/- 0.01/mg bone (p less than 0.001). Conditioned media prepared from PH and DNH bone were quantitated for CSA by their ability to promote in vitro granulocyte colony formation of nonadherent human marrow cells. Stromal CSA production was destroyed by freeze--thawing and was radioresistant (4400 rad). Of DNH stromal cells, 15%--30% were monocyte-macrophage, but the slow absolute numbers of these cells suggested alternative CSA cellular sources in distal bones. PH stroma produced significantly more CSA than DNH bone stroma: 0.72 +/- 0.10 versus 0.30 +/- 0.06 U/mg bone (p less than 0.01). The CSA concentration gradient between PH and DNH bones may contribute to the regulation of granulopoiesis in marrow and to the absence of hemopoiesis distally.


Blood ◽  
1981 ◽  
Vol 57 (4) ◽  
pp. 771-780 ◽  
Author(s):  
RS Schwartz ◽  
PL Greenberg

Abstract In order to evaluate the role of the stromal bone marrow microenvironment in regulating granulopoiesis, we have examined the capacity of adult human proximal hemopoietic (PH) and distal nonhemopoietic (DNH) long bone to produce colony-stimulating activity (CSA), characterized the cellular sources of CSA, and quantitated the colony-forming cells (CFU-GM) of marrow from these sites. Stromal elements were obtained from slices of cancellous bone. PH bone marrow stroma contained CFU-GM concentrations similar to aspirated PH marrow and significantly more CFU-GM than DNH bone marrow: 20.7 +/- 4.8/10(5) cells and 25.8 +/- 12.0/mg bone versus 0.81 +/- 0.34/10(5) cells and 0.02 +/- 0.01/mg bone (p less than 0.001). Conditioned media prepared from PH and DNH bone were quantitated for CSA by their ability to promote in vitro granulocyte colony formation of nonadherent human marrow cells. Stromal CSA production was destroyed by freeze--thawing and was radioresistant (4400 rad). Of DNH stromal cells, 15%--30% were monocyte-macrophage, but the slow absolute numbers of these cells suggested alternative CSA cellular sources in distal bones. PH stroma produced significantly more CSA than DNH bone stroma: 0.72 +/- 0.10 versus 0.30 +/- 0.06 U/mg bone (p less than 0.01). The CSA concentration gradient between PH and DNH bones may contribute to the regulation of granulopoiesis in marrow and to the absence of hemopoiesis distally.


Sign in / Sign up

Export Citation Format

Share Document