scholarly journals A phosphorus-31 nuclear magnetic resonance investigation of intracellular environment in human normal and sickle cell blood

Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 196-209 ◽  
Author(s):  
YF Lam ◽  
AK Lin ◽  
C Ho

Abstract Intracellular pH and 2,3-diphosphoglycerate concentration in sickle cell amenia and normal human blood samples were measured by means of phosphorus-31 nuclear magnetic resonance spectroscopy. To monitor the concentrations of various internal phosphorylated metabolites of intact red blood cells, heparinized blood samples were used and were incubated at 37 degrees C with 5.6% C92, 25% O2, and 69.4% N2. The 31P chemical shifts of phosphorylated compounds, such as 2,3-diphosphoglycerate, adenosine 5′-triphosp-ate, and inorganic phosphate, depend on pH, and by using an appropriate calibration curve, the intracellular pH of intact erythrocytes can be obtained. The intracellular pH values in fresh sickl cell blood and normal blood were found to be 7.14 and 7.29, respectively. However, the whole-blood pH, as measured by a standard pH meter, was found to be 7.54 for both types of blood. The initial concentration of 2,3-diphosphoglycerate in sickle cell blood was about 30% higher, but it was depleted much faster during incubation than that in normal blood. The difference in intracellular pH between these two types of blood samples remained constant during incubation, even after depletion of 2,3-diphosphoglycerate. These results suggest that there are differences in intracellular environment between normal and sickle cell blood. Thus, 31P nuclear magnetic resonance spectroscopy provides a fast, direct, continuous, and noninvasive way to monitor the intracellular environment of intact erythrocytes.

Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 196-209 ◽  
Author(s):  
YF Lam ◽  
AK Lin ◽  
C Ho

Intracellular pH and 2,3-diphosphoglycerate concentration in sickle cell amenia and normal human blood samples were measured by means of phosphorus-31 nuclear magnetic resonance spectroscopy. To monitor the concentrations of various internal phosphorylated metabolites of intact red blood cells, heparinized blood samples were used and were incubated at 37 degrees C with 5.6% C92, 25% O2, and 69.4% N2. The 31P chemical shifts of phosphorylated compounds, such as 2,3-diphosphoglycerate, adenosine 5′-triphosp-ate, and inorganic phosphate, depend on pH, and by using an appropriate calibration curve, the intracellular pH of intact erythrocytes can be obtained. The intracellular pH values in fresh sickl cell blood and normal blood were found to be 7.14 and 7.29, respectively. However, the whole-blood pH, as measured by a standard pH meter, was found to be 7.54 for both types of blood. The initial concentration of 2,3-diphosphoglycerate in sickle cell blood was about 30% higher, but it was depleted much faster during incubation than that in normal blood. The difference in intracellular pH between these two types of blood samples remained constant during incubation, even after depletion of 2,3-diphosphoglycerate. These results suggest that there are differences in intracellular environment between normal and sickle cell blood. Thus, 31P nuclear magnetic resonance spectroscopy provides a fast, direct, continuous, and noninvasive way to monitor the intracellular environment of intact erythrocytes.


Neurology ◽  
1985 ◽  
Vol 35 (6) ◽  
pp. 781-781 ◽  
Author(s):  
O. A.C. Petroff ◽  
J. W. Prichard ◽  
K. L. Behar ◽  
J. R. Alger ◽  
J. A. den Hollander ◽  
...  

1998 ◽  
Vol 88 (2) ◽  
pp. 461-472 ◽  
Author(s):  
Maryceline T. Espanol ◽  
Lawrence Litt ◽  
Koh Hasegawa ◽  
Lee-Hong Chang ◽  
Jeffrey M. Macdonald ◽  
...  

Background Fructose-1,6-bisphosphate (FBP) sometimes provides substantial cerebral protection during hypoxia or ischemia. 31P/1H nuclear magnetic resonance spectroscopy of cerebrocortical slices was used to study the effects of FBP on hypoxia-induced metabolic changes. In addition, 13C-labeled glucose was administered and 13C nuclear magnetic resonance spectroscopy was used to search for FBP-induced modulations in glycolysis and the pentose-phosphate pathway. Methods In each experiment, 80 slices (350 microm) obtained from ten 7-day-old Sprague-Dawley rat litter mates were placed together in a 20-mm nuclear magnetic resonance tube, perfused, and subjected to 30 min of hypoxia (PO2 < 3 mmHg). Nine experiments were performed, with n = 3 in each of three groups: (1) no treatment with FBP; (2) 60 min of prehypoxia treatment with FBP (2 mM); and (3) 60 min of posthypoxia treatment with FBP (2 mM). 31P/1H Interleaved nuclear magnetic resonance spectra at 4.7 T provided average adenosine triphosphate, intracellular pH, and lactate. Cresyl violet stains of random slices taken at predetermined time points were studied histologically. Some experiments had [2-13C]glucose in the perfusate. Slices from these studies were frozen for perchloric acid extraction of intracellular metabolites and studied with high-resolution 13C nuclear magnetic resonance spectroscopy at 11.75 T. Results With no pretreatment with FBP, hypoxia caused an approximately 50% loss of adenosine triphosphate, an approximately 700% increase in lactate, and a decrease in intracellular pH to approximately 6.4. Pretreatment with FBP resulted in no detectable loss of adenosine triphosphate, no increase in lactate, and minimal morphologic changes but did not alter decreases in intracellular pH. 13C Nuclear magnetic resonance spectra of extracted metabolites showed that pretreatment caused accumulation of [1-13C]fructose-6-phosphate, an early pentose-phosphate pathway metabolite. Posthypoxic treatment with FBP had no effects compared with no treatment. Conclusions During severe hypoxia, pretreatment with FBP completely preserves adenosine triphosphate and almost completely preserves cell morphology but does not alter hypoxia-induced decreases in intracellular pH. Pretreatment also substantially augments the flux of glucose into the pentose-phosphate pathway.


Sign in / Sign up

Export Citation Format

Share Document