intracellular environment
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 29)

H-INDEX

31
(FIVE YEARS 4)

Author(s):  
Anny Carolline Silva Oliveira ◽  
Luisa Rezende ◽  
Vladimir Gorshkov ◽  
Marcella Nunes Melo-Braga ◽  
Thiago Verano-Braga ◽  
...  

Trypanosoma cruzi invades non-professional phagocytic cells by subverting their membrane repair process, which is dependent on membrane injury and cell signaling, intracellular calcium increase, and lysosome recruitment. Cells lacking lysosome-associated membrane proteins 1 and 2 (LAMP1 and LAMP2) are less permissive to parasite invasion but more prone to parasite intracellular multiplication. Several passages through a different intracellular environment can significantly change T. cruzi’s gene expression profile. Here, we evaluated whether one single passage through LAMP-deficient (KO) or wild-type (WT) fibroblasts, thus different intracellular environments, could influence T. cruzi Y strain trypomastigotes’ ability to invade L6 myoblasts and WT fibroblasts host cells. Parasites released from LAMP2 KO cells (TcY-L2−/−) showed higher invasion, calcium signaling, and membrane injury rates, for the assays in L6 myoblasts, when compared to those released from WT (TcY-WT) or LAMP1/2 KO cells (TcY-L1/2−/−). On the other hand, TcY-L1/2−/− showed higher invasion, calcium signaling, and cell membrane injury rates, for the assays in WT fibroblasts, compared to TcY-WT and TcY-L1/2−/−. Albeit TcY-WT presented an intermediary invasion and calcium signaling rates, compared to the others, in WT fibroblasts, they induced lower levels of injury, which reinforces that signals mediated by surface membrane protein interactions also have a significant contribution to trigger host cell calcium signals. These results clearly show that parasites released from WT or LAMP KO cells are distinct from each other. Additionally, these parasites’ ability to invade the cell may be distinct depending on which cell type they interact with. Since these alterations most likely would reflect differences among parasite surface molecules, we also evaluated their proteome. We identified few protein complexes, membrane, and secreted proteins regulated in our dataset. Among those are some members of MASP, mucins, trans-sialidases, and gp63 proteins family, which are known to play an important role during parasite infection and could correlate to TcY-WT, TcY-L1/2−/−, and TcY-L2−/− biological behavior.


BIOCELL ◽  
2022 ◽  
Vol 46 (3) ◽  
pp. 795-802
Author(s):  
JUAN MANUEL OSTERA ◽  
SUSANA PUNTARULO ◽  
GABRIELA MALANGA

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Chen-Yang Yuan ◽  
Zhi-Guo Ma ◽  
Jing-Xian Zhang ◽  
Xiang-Cen Liu ◽  
Gui-Lin Du ◽  
...  

Abstract Background Steroid drugs are essential for disease prevention and clinical treatment. However, due to intricated steroid structure, traditional chemical methods are rarely implemented into the whole synthetic process for generating steroid intermediates. Novel steroid drug precursors and their ideal bacterial strains for industrial production have yet to be developed. Among these, 9,21-dihydroxy-20-methyl-pregna-4-en-3-one (9-OH-4-HP) is a novel steroid drug precursor, suitable for the synthesis of corticosteroids. In this study, a combined strategy of blocking Δ1-dehydrogenation and the C19 pathway as well as improving the intracellular environment was investigated to construct an effective 9-OH-4-HP-producing strain. Results The Δ1-dehydrogenation-deficient strain of wild-type Mycobacterium neoaurum DSM 44074 produces 9-OH-4-HP with a molar yield of 4.8%. Hsd4A, encoding a β-hydroxyacyl-CoA dehydrogenase, and fadA5, encoding an acyl-CoA thiolase, were separately knocked out to block the C19 pathway in the Δ1-dehydrogenation-deficient strain. The two engineered strains were able to accumulate 0.59 g L−1 and 0.47 g L−1 9-OH-4-HP from 1 g L−1 phytosterols, respectively. Furthermore, hsd4A and fadA5 were knocked out simultaneously in the Δ1-dehydrogenation-deficient strain. The 9-OH-4-HP production from the Hsd4A and FadA5 deficient strain was 11.9% higher than that of the Hsd4A deficient strain and 40.4% higher than that of the strain with FadA5 deficiency strain, respectively. The purity of 9-OH-4-HP obtained from the Hsd4A and FadA5 deficient strain has reached 94.9%. Subsequently, the catalase katE from Mycobacterium neoaurum and an NADH oxidase, nox, from Bacillus subtilis were overexpressed to improve the intracellular environment, leading to a higher 9-OH-4-HP production. Ultimately, 9-OH-4-HP production reached 3.58 g L−1 from 5 g L−1 phytosterols, and the purity of 9-OH-4-HP improved to 97%. The final 9-OH-4-HP production strain showed the best molar yield of 85.5%, compared with the previous reported strain with 30% molar yield of 9-OH-4-HP. Conclusion KstD, Hsd4A, and FadA5 are key enzymes for phytosterol side-chain degradation in the C19 pathway. Double deletion of hsd4A and fadA5 contributes to the blockage of the C19 pathway. Improving the intracellular environment of Mycobacterium neoaurum during phytosterol bioconversion could accelerate the conversion process and enhance the productivity of target sterol derivatives.


Author(s):  
Jiajia Sun ◽  
Yejing Shi ◽  
Huichun Shi ◽  
Yumin Hou ◽  
Chunlan Hu ◽  
...  

BKPyV poses a serious threat to the health of immunocompromised patients, and there are currently no curative drugs. Understanding the relationship between the virus and intracellular environment contributes to the discovery of antiviral targets.


2021 ◽  
Author(s):  
Chen-Yang Yuan ◽  
Zhi-Guo Ma ◽  
Jing-Xian Zhang ◽  
Xiang-Cen Liu ◽  
Gui-Lin Du ◽  
...  

Abstract BackgroundSteroid drugs are particularly important for disease prevention and clinical treatment. However, traditional chemical methods are rarely implemented during the whole synthetic process to generate steroid intermediates due to the intricate steroid structure. Novel steroid drug precursors and their ideal bacterial strains for industrial production have yet to be developed. Among these, 9-OH-4-HP is a potential steroid drug precursor for the synthesis of corticosteroids. In this study, a combined strategy of blocking Δ1-dehydrogenation and the C19 pathway as well as improving the intracellular environment was investigated to construct an effective 9-OH-4-HP-producing strain.ResultsA Δ1-dehydrogenation-deficient strain of wild-type Mycobacterium neoaurum DSM 44074 produces 9-OH-4-HP with a molar yield of 4.8%. hsd4A, encoding a β-hydroxyacyl-CoA dehydrogenase, and fadA5 encoding an acyl-COA thiolase, were separately knocked out to block the C19 pathway in the Δ1-dehydrogenation-deficient strain. The two engineered strains could accumulate 0.59 g L-1 and 0.47 g L-1 9-OH-4-HP from 1 g L-1 phytosterols. Furthermore, hsd4A and fadA5 were knocked out simultaneously in the Δ1-dehydrogenation-deficient strain. The 9-OH-4-HP production from the Hsd4A and FadA5 double-deficient strain was 11.9% higher than that of the Hsd4A -deficient strain and 40.4% higher than that of the strain with FadA5 deficiency, and its selectivity reached 94.9%. Subsequently, the catalase katE from Mycobacterium and an NADH oxidase, nox, from Bacillus subtilis were overexpressed to improve the intracellular environment. Ultimately, 9-OH-4-HP production reached 3.58 g L-1 from 5 g L-1 phytosterols, and the selectivity of 9-OH-4-HP improved to 97%.Conclusionhsd4A and fadA5 are key enzymes in the C19 pathway for phytosterol side chain degradation. Deletion of hsd4A and fadA5 could almost entirely block the C19 pathway. Improving the intracellular environment of Mycobacterium during phytosterol bioconversion could accelerate the conversion process and enhance the productivity of target sterol derivatives.


Author(s):  
Byunghee Hwang ◽  
Tae-Il Kim ◽  
Hyunjin Kim ◽  
Sungjin Jeon ◽  
Yongdoo Choi ◽  
...  

A ubiquinone-BODIPY photosensitizer self-assembles into nanoparticles (PS-Q-NPs) and undergoes selective activation within the highly reductive intracellular environment of tumors, resulting in “turn-on” fluorescence and photosensitizing activities.


Sign in / Sign up

Export Citation Format

Share Document