scholarly journals Expression of fibrinogen receptors during activation and subsequent desensitization of human platelets by epinephrine

Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1224-1231
Author(s):  
SJ Shattil ◽  
HJ Motulsky ◽  
PA Insel ◽  
L Flaherty ◽  
LF Brass

Epinephrine causes platelet aggregation and secretion by interacting with alpha 2-adrenergic receptors on the platelet surface. Platelet aggregation requires the binding of fibrinogen to a specific receptor on the membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The current studies were designed to examine the effect of occupancy of platelet alpha 2-adrenergic receptors by epinephrine on the expression of fibrinogen receptors and on the aggregation of platelets. The ability of epinephrine to induce the expression of fibrinogen receptors was studied under two different conditions: acute stimulation (less than 1 min) and prolonged stimulation (50 to 90 min), the latter of which is associated with a reduction or “desensitization” of the platelet aggregation response. Expression of the fibrinogen receptor was monitored with 125I-fibrinogen as well as with 125I-PAC-1 (PAC-1), a monoclonal antibody that binds to the glycoprotein IIb-IIIa complex only after platelets are activated. Epinephrine caused an immediate increase in PAC-1 and fibrinogen binding that was dependent on occupancy of the alpha 2-receptor by epinephrine and on the presence of extracellular free Ca (KCa = 30 mumol/L). By itself, 1 mmol/L Mg was unable to support induction of the fibrinogen receptor by epinephrine. However, it did decrease the Ca requirement by about two orders of magnitude. Prolonged stimulation of unstirred platelets by epinephrine led to a 70% decrease in the aggregation response when the platelets were subsequently stirred. Despite their decreased aggregation response, desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due simply to a decrease in fibrinogen receptor expression. Although desensitization was not affected by pretreatment of the platelets with aspirin, it was partially prevented when extracellular Ca was chelated by EDTA during the long incubation with epinephrine. These studies demonstrate that once platelet alpha 2-adrenergic receptors are occupied by epinephrine, extracellular Ca is involved in initiating the aggregation response by supporting the induction of the fibrinogen receptor and the binding of fibrinogen. Furthermore. Ca-dependent reactions subsequent to fibrinogen binding may be necessary for maximal platelet aggregation and are impaired when platelets become desensitized to epinephrine.

Blood ◽  
1986 ◽  
Vol 68 (6) ◽  
pp. 1224-1231 ◽  
Author(s):  
SJ Shattil ◽  
HJ Motulsky ◽  
PA Insel ◽  
L Flaherty ◽  
LF Brass

Abstract Epinephrine causes platelet aggregation and secretion by interacting with alpha 2-adrenergic receptors on the platelet surface. Platelet aggregation requires the binding of fibrinogen to a specific receptor on the membrane glycoprotein IIb-IIIa complex. Although the IIb-IIIa complex is identifiable on the surface of resting platelets, the fibrinogen receptor is expressed only after platelet activation. The current studies were designed to examine the effect of occupancy of platelet alpha 2-adrenergic receptors by epinephrine on the expression of fibrinogen receptors and on the aggregation of platelets. The ability of epinephrine to induce the expression of fibrinogen receptors was studied under two different conditions: acute stimulation (less than 1 min) and prolonged stimulation (50 to 90 min), the latter of which is associated with a reduction or “desensitization” of the platelet aggregation response. Expression of the fibrinogen receptor was monitored with 125I-fibrinogen as well as with 125I-PAC-1 (PAC-1), a monoclonal antibody that binds to the glycoprotein IIb-IIIa complex only after platelets are activated. Epinephrine caused an immediate increase in PAC-1 and fibrinogen binding that was dependent on occupancy of the alpha 2-receptor by epinephrine and on the presence of extracellular free Ca (KCa = 30 mumol/L). By itself, 1 mmol/L Mg was unable to support induction of the fibrinogen receptor by epinephrine. However, it did decrease the Ca requirement by about two orders of magnitude. Prolonged stimulation of unstirred platelets by epinephrine led to a 70% decrease in the aggregation response when the platelets were subsequently stirred. Despite their decreased aggregation response, desensitized platelets bound PAC-1 and fibrinogen normally, indicating that the loss of aggregation was not due simply to a decrease in fibrinogen receptor expression. Although desensitization was not affected by pretreatment of the platelets with aspirin, it was partially prevented when extracellular Ca was chelated by EDTA during the long incubation with epinephrine. These studies demonstrate that once platelet alpha 2-adrenergic receptors are occupied by epinephrine, extracellular Ca is involved in initiating the aggregation response by supporting the induction of the fibrinogen receptor and the binding of fibrinogen. Furthermore. Ca-dependent reactions subsequent to fibrinogen binding may be necessary for maximal platelet aggregation and are impaired when platelets become desensitized to epinephrine.


1979 ◽  
Author(s):  
J. S. Bennett ◽  
G. Vilatre

Fibrinosen is a cofactor for the aggregation of human platelets by ADP but its precise role is not known. In order to clarify the function of fibrinogen in platelet aggregation, we measured the binding of 125I-labeled human fibrinogen to gel-filtered human platelets before and after platelet emulation by ADP. Incubations were performed without stirring to prevent platelet aggregation and secretion. Platelet-bound and free 125I-fibrinogen were separated by centrifugaron of the platelets through silicone oil. Specific fibrinogen binding was that ibrinogen which could be displaced from the platelets by a 10-fold excess unlabeled fibrinogen. Specific fibrinogen binding required platelet stimulation by ADP and either Ca+2 or Mg+2. Specific ending reached equilibrium within 60 sec. Demonstrated saturation kinetics, and did not occur with thrombasthenic platelets. Scatchard analysis demonstrated a single class of ending sites with a Kd of 25 ± 3.9 ug/ml and 39,000 ± 5,000 binding sites per platlet the extent of ADP-induced fibrinogen binding to unstirred platelets was compared to the extent of aggregation of stirred platelets induced by the same concentrations of ADP, correlation 0.96 was seen. This study demonstrates. that a uniform population of fibrinogen receptors is exposed on the platelet surface by ADP. Furthermore, we suggest that the fibrinogen molecules bound to the platelet as a result of ADP stimulation are directly involved in the platelet aggregation response.


1999 ◽  
Vol 81 (01) ◽  
pp. 124-130 ◽  
Author(s):  
Enrico Festetics ◽  
Alessandra Bertoni ◽  
Fabiola Sinigaglia ◽  
Cesare Balduini ◽  
Mauro Torti

SummaryTyrosine phosphorylation of the non-receptor tyrosine kinases pp72sykand pp125FAKand of the γ2 isoform of phospholipase C (PLCγ2) in human platelets stimulated with the lectin Concanavalin A was investigated. Concanavalin A induced the rapid tyrosine phosphorylation of pp72sykand PLCγ2 with a similar kinetics, while tyrosine phosphorylation of pp125FAKoccurred in a later phase of platelet activation. When compared with other platelet agonists, Concanavalin A revealed to be at least as potent as collagen in inducing tyrosine phosphorylation of PLCγ2 and pp125FAK, while tyrosine phosphorylation of pp72sykinduced by the lectin was much stronger than that induced by thrombin or collagen. Concanavalin A-induced tyrosine phosphorylation of pp72syk, PLCγ2 and pp125FAKwas not dependent on platelet aggregation as it occurred normally even in the absence of sample stirring and when fibrinogen binding to integrin αIIb-β3was inhibited by the peptide RGDS. Tyrosine phosphorylation of pp72syk, PLCγ2 and pp125FAKrequired the binding of the lectin to the platelet surface, but was not observed in platelets treated with succinyl-Concanavalin A, a derivative of the lectin that interacts with the same receptors but does not promote clustering of membrane glycoproteins. Moreover, the aggregation-independent tyrosine phosphorylation of pp125FAKand pp72sykinduced by Concanavalin A required the expression of integrin αIIb-β3on the platelet surface as it was strongly inhibited in platelets from patients affected by Glanzmann thrombasthenia. By contrast, tyrosine phosphorylation of PLCγ2 occurred normally also in thrombasthenic platelets stimulated with Concanavalin A. These results demonstrate that, even in the absence of aggregation, the clustering of integrin αIIb-β3induced by Concanavalin A on the platelet surface directly promotes tyrosine phosphorylation of pp72sykand pp125FAKand provide further evidence that the oligomerization of the fibrinogen receptor promoted by its natural ligand during platelet aggregation may be responsible for the tyrosine phosphorylation of these proteins induced by physiological agonists.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2643-2648 ◽  
Author(s):  
NE Kirschbaum ◽  
MW Mosesson ◽  
DL Amrani

Abstract Glycoprotein (GP) IIb/IIIa on adenosine diphosphate (ADP)-activated human platelets interacts with specific sites on the fibrinogen molecule leading to aggregation. We characterized the platelet-binding site on the gamma chains of fibrinogen using plasmic fragments D gamma A and D gamma'. Fragment D gamma A, which contains the carboxy terminal gamma A400–411 platelet-binding sequence (HHLGGAKQAGDV), was 70-fold more active than the synthetic gamma A400–411 peptide in inhibiting ADP- induced platelet aggregation. Fragment D gamma A inhibited fibrinogen binding and also bound directly to ADP-activated platelets. The Kd values determined for fibrinogen and fragment D gamma A binding were 0.55 mumol/L and 1.2 mumol/L, respectively. In contrast, fragment D gamma', which differs from fragment D gamma A with respect to its gamma chain sequence from position 408 to the COOH-terminus at position 427, did not inhibit platelet aggregation or fibrinogen binding, and did not bind directly to the platelet surface. Denaturation of fragment D gamma A with guanidine-HCl caused a loss of inhibitory activity in platelet aggregation assays. These data indicate that the native conformation of the gamma chain platelet-binding site on fibrinogen is important for optimal binding to GPIIb/IIIa.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 59-63 ◽  
Author(s):  
EI Peerschke ◽  
BS Coller

We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.


1988 ◽  
Vol 255 (3) ◽  
pp. H651-H658 ◽  
Author(s):  
E. Kornecki ◽  
Y. H. Ehrlich ◽  
R. Egbring ◽  
M. Gramse ◽  
R. Seitz ◽  
...  

We have examined the interaction of human granulocyte elastase with human platelets. Incubation of human platelets with human granulocyte elastase exposed active fibrinogen-binding sites as evidenced by 125I-labeled fibrinogen binding and spontaneous fibrinogen-induced platelet aggregation. The aggregation of platelets by fibrinogen occurred at low concentrations of human granulocyte elastase (0.5–1 microgram/ml). Platelets pretreated with human granulocyte elastase exposed an average of 10,500 fibrinogen binding sites per platelet, i.e., about one-third the number of binding sites exposed by optimal concentrations of ADP. With the use of a polyclonal antiplatelet membrane antibody, the glycoproteins IIb (GPIIb), IIIa (GPIIIa), and a 60,000-Da (60 kDa) protein (66 kDa in a reduced system) derived from GPIIIa were immunoprecipitated from the surface of detergent extracts of human 125I-radiolabeled platelets pretreated with increasing concentrations of human granulocyte elastase. Experiments performed by immunoblotting with use of polyclonal and monoclonal antibodies directed to GPIIIa showed that pretreatment of human platelets with granulocyte elastase resulted in the appearance of an additional proteolytic derivative of GPIIIa migrating with an apparent molecular mass of 120 kDa in a nonreduced system. GPIIIa appears to be the preferred substrate of elastase, since GPIIb was not degraded by human granulocyte elastase. We conclude that 1) the proteolytic action of human granulocyte elastase on platelet GPIIIa results in the formation of two major hydrolytic products, and 2) human granulocyte elastase exposes active fibrinogen-binding sites associated with the GPIIb/GPIIIa complex, resulting in direct platelet aggregation by fibrinogen.


Blood ◽  
1984 ◽  
Vol 64 (1) ◽  
pp. 59-63 ◽  
Author(s):  
EI Peerschke ◽  
BS Coller

Abstract We recently described a monoclonal antibody, 10E5 , that completely blocks adenosine diphosphate (ADP) induced fibrinogen binding to platelets and aggregation induced by ADP, epinephrine, and thrombin. Multiple lines of evidence indicate that 10E5 binds to platelet membrane glycoproteins IIb and/or IIIa. Because it has been reported that platelets treated with chymotrypsin aggregate when fibrinogen is added, we tested the effect of 10E5 antibody on chymotrypsin-induced fibrinogen binding and platelet aggregation. Aspirin-treated human platelets were washed in modified Tyrode's buffer (pH 7.5), incubated for 5 minutes at 22 degrees C with 300 micrograms/mL chymotrypsin, and washed again. The amount of 10E5 antibody bound to these platelets (37,232 +/- 2,928 molecules/platelet; mean +/- SEM, N=9) was similar to that bound to unstimulated control platelets (36,910 +/- 2,669) and did not differ significantly from the amount of antibody bound to ADP- treated platelets (P less than .01, N = 5). The amount of 10E5 bound to chymotrypsin-treated platelets correlated directly with the amount of fibrinogen bound to separate aliquots of the same platelet samples (r = .876, P less than .001). The 10E5 antibody caused virtually complete inhibition of both the binding of fibrinogen to chymotrypsin-treated platelets and the aggregation induced by exogenous fibrinogen. Immunoprecipitation studies of 125I-labeled chymotrypsin-treated platelets revealed that the 10E5 antibody bound proteins with molecular weights characteristic of glycoproteins IIb and IIIa. These data suggest that the fibrinogen receptor on chymotrypsin-treated platelets is identical to that on ADP-treated platelets and that this receptor is either near to, or on, the glycoprotein IIb/IIIa complex.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 109-115
Author(s):  
GP Tuszynski ◽  
VL Rothman ◽  
A Murphy ◽  
K Siegler ◽  
KA Knudsen

Thrombospondin (TSP), isolated from human platelets, promotes aggregation of both nonstimulated platelets and platelets stimulated with thrombin or ADP. The TSP-promoted aggregation is specific since a monoclonal antibody against TSP inhibits the effect of exogenously added TSP and inhibits thrombin-induced platelet aggregation in the absence of added TSP. Several lines of evidence suggest that TSP mediates its effect on aggregation of nonstimulated and stimulated platelets through different platelet-surface receptor systems. The TSP- promoted aggregation of nonstimulated platelets was inhibited by a monoclonal antibody to platelet glycoprotein IV (GPIV), but not by a monoclonal antibody to the fibrinogen receptor, GPIIb-IIIa. In contrast, the antibody to GPIIb-IIIa totally inhibited the TSP- potentiated aggregation of thrombin-stimulated platelets, whereas the antibody to GPIV has no effect. Thus, these studies suggest that TSP promotes platelet aggregation by at least two mechanisms--one dependent on and one independent of the platelet fibrinogen receptor system.


Blood ◽  
1992 ◽  
Vol 79 (10) ◽  
pp. 2643-2648 ◽  
Author(s):  
NE Kirschbaum ◽  
MW Mosesson ◽  
DL Amrani

Glycoprotein (GP) IIb/IIIa on adenosine diphosphate (ADP)-activated human platelets interacts with specific sites on the fibrinogen molecule leading to aggregation. We characterized the platelet-binding site on the gamma chains of fibrinogen using plasmic fragments D gamma A and D gamma'. Fragment D gamma A, which contains the carboxy terminal gamma A400–411 platelet-binding sequence (HHLGGAKQAGDV), was 70-fold more active than the synthetic gamma A400–411 peptide in inhibiting ADP- induced platelet aggregation. Fragment D gamma A inhibited fibrinogen binding and also bound directly to ADP-activated platelets. The Kd values determined for fibrinogen and fragment D gamma A binding were 0.55 mumol/L and 1.2 mumol/L, respectively. In contrast, fragment D gamma', which differs from fragment D gamma A with respect to its gamma chain sequence from position 408 to the COOH-terminus at position 427, did not inhibit platelet aggregation or fibrinogen binding, and did not bind directly to the platelet surface. Denaturation of fragment D gamma A with guanidine-HCl caused a loss of inhibitory activity in platelet aggregation assays. These data indicate that the native conformation of the gamma chain platelet-binding site on fibrinogen is important for optimal binding to GPIIb/IIIa.


Blood ◽  
1996 ◽  
Vol 87 (2) ◽  
pp. 602-612 ◽  
Author(s):  
JD Wencel-Drake ◽  
C Boudignon-Proudhon ◽  
MG Dieter ◽  
AB Criss ◽  
LV Parise

In agonist-stimulated platelets, the integrin alpha IIb beta 3 (glycoprotein IIb-IIIa) is converted from an inactive to an active fibrinogen receptor, thereby mediating platelet aggregation. With time after agonist addition, at least two events occur: fibrinogen becomes irreversibly bound to the platelet and, when stirring is delayed, platelets lose the ability to aggregate despite the presence of maximally bound fibrinogen. Because we previously identified an actively internalized pool of alpha IIb, beta 3 in platelets, we explored the possibility that both of these events might result from the internalization of fibrinogen bound to active alpha IIb beta 3. Under conditions of irreversible fibrinogen binding, fluorescence microscopy showed that biotinylated fibrinogen is rapidly internalized by activated platelets to a surface-inaccessible, intracellular pool. Flow cytometric analysis showed that the observed loss in accessibility to extracellular probes immediately precedes a loss in ability to the platelets to aggregate. Moreover, prevention of irreversible fibrinogen binding results in a prevention of internalization and a retention of aggregation capacity. Thus, the internalization of fibrinogen from the activated platelet surface appears to contribute not only to the irreversible phase of fibrinogen binding, but also to the downregulation of platelet adhesiveness. Fibrinogen internalization is therefore likely to represent a fundamental regulatory mechanism that modulates platelet function.


Sign in / Sign up

Export Citation Format

Share Document