scholarly journals Use of α-2a-Interferon to Treat Cytogenetic Relapse of Chronic Myeloid Leukemia After Marrow Transplantation

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2549-2554 ◽  
Author(s):  
Celestia S. Higano ◽  
Deborah Chielens ◽  
Wendy Raskind ◽  
Eileen Bryant ◽  
Mary E.D. Flowers ◽  
...  

Fourteen patients with cytogenetic relapse of chronic myeloid leukemia (CML) after transplantation with unmanipulated bone marrow were treated with α-2a–interferon. There were eight men and six women, median age, 33 years. Twelve patients received marrow from a related allogeneic donor and two received marrow from a syngeneic donor. The median percentage of Ph-positive metaphases at the time of starting interferon was 55% (10% to 87%). Daily interferon was started at a dose of 1 to 3 × 106 U/M2/d, depending on initial blood counts and was adjusted as tolerated to maintain the white blood count in the range of 2,000 to 3,000/μL and the platelet count greater than 60,000/μL. After a stable cytogenetic remission was achieved, the interferon dose was decreased to a maintenance level. Twelve patients achieved a complete cytogenetic remission on at least one occasion. Median time to achieve a complete cytogenetic remission was 7.5 months (range, 1.5 to 12). Eight patients remain in cytogenetic remission for 10+ to 54+ months from the time of first documented remission. After complete cytogenetic remission was established, nine patients were tested for the presence of the mRNA transcript of the bcr/abl fusion gene by polymerase chain reaction (PCR) testing. Four patients were PCR-negative on at least one occasion: two patients were PCR-negative on a single occasion; one patient had serial tests, which were PCR-negative; and one patient had serial PCR-negative peripheral blood tests with a single PCR-positive bone marrow obtained concurrently with a negative peripheral blood test. Median follow-up time for all patients is 44 months (range, 20 to 64). Interferon was generally well tolerated; only one responding patient was unable to continue interferon because of toxicity. Interferon induces durable cytogenetic remissions in a significant proportion (57%) of patients with cytogenetic relapse following bone marrow transplantation (BMT) without causing life-threatening toxicities.

Blood ◽  
1997 ◽  
Vol 90 (7) ◽  
pp. 2549-2554 ◽  
Author(s):  
Celestia S. Higano ◽  
Deborah Chielens ◽  
Wendy Raskind ◽  
Eileen Bryant ◽  
Mary E.D. Flowers ◽  
...  

Abstract Fourteen patients with cytogenetic relapse of chronic myeloid leukemia (CML) after transplantation with unmanipulated bone marrow were treated with α-2a–interferon. There were eight men and six women, median age, 33 years. Twelve patients received marrow from a related allogeneic donor and two received marrow from a syngeneic donor. The median percentage of Ph-positive metaphases at the time of starting interferon was 55% (10% to 87%). Daily interferon was started at a dose of 1 to 3 × 106 U/M2/d, depending on initial blood counts and was adjusted as tolerated to maintain the white blood count in the range of 2,000 to 3,000/μL and the platelet count greater than 60,000/μL. After a stable cytogenetic remission was achieved, the interferon dose was decreased to a maintenance level. Twelve patients achieved a complete cytogenetic remission on at least one occasion. Median time to achieve a complete cytogenetic remission was 7.5 months (range, 1.5 to 12). Eight patients remain in cytogenetic remission for 10+ to 54+ months from the time of first documented remission. After complete cytogenetic remission was established, nine patients were tested for the presence of the mRNA transcript of the bcr/abl fusion gene by polymerase chain reaction (PCR) testing. Four patients were PCR-negative on at least one occasion: two patients were PCR-negative on a single occasion; one patient had serial tests, which were PCR-negative; and one patient had serial PCR-negative peripheral blood tests with a single PCR-positive bone marrow obtained concurrently with a negative peripheral blood test. Median follow-up time for all patients is 44 months (range, 20 to 64). Interferon was generally well tolerated; only one responding patient was unable to continue interferon because of toxicity. Interferon induces durable cytogenetic remissions in a significant proportion (57%) of patients with cytogenetic relapse following bone marrow transplantation (BMT) without causing life-threatening toxicities.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 873-876 ◽  
Author(s):  
TS Ganesan ◽  
GL Min ◽  
JM Goldman ◽  
BD Young

Abstract Four patients with Philadelphia (Ph′) positive chronic myeloid leukemia (CML) were studied before, after, and on relapse following allogeneic bone marrow transplantation (BMT). Southern analysis of DNA from cells collected before and at relapse after BMT was performed in order to investigate the origin of the leukemia at relapse. Using minisatellite probes we showed that the relapse occurred in cells of host origin in all four patients and this was confirmed with a Y chromosome specific probe in two male patients who had a female donor. Furthermore, using two probes for the breakpoint cluster region (bcr) on chromosome 22, we showed that leukemic cells at relapse bore identical rearrangements to those in the disease at time of presentation of each patient. We conclude that relapse in all four patients is due to re-emergence of the original leukemic clone.


Blood ◽  
1990 ◽  
Vol 76 (11) ◽  
pp. 2337-2342
Author(s):  
IM Clauss ◽  
B Vandenplas ◽  
MG Wathelet ◽  
C Dorval ◽  
A Delforge ◽  
...  

Recombinant human interferon-alpha (IFN-alpha) can induce a hematologic remission in patients with chronic myeloid leukemia. However, some patients are resistant and others develop late resistance to the IFN- alpha treatment. To understand the molecular mechanism of this resistance, we have analyzed the expression of 10 IFN-inducible genes in the cells of three resistant patients, two responsive patients, and six healthy controls. Northern blot hybridizations showed that all the genes were induced in in vitro IFN-alpha treated peripheral blood cells of the patients and healthy controls. These genes were also inducible in peripheral blood and bone marrow cells of two out of two resistant patients administered an injection of IFN-alpha. We conclude that the resistance to the IFN-alpha treatment of the chronic myeloid leukemia patients we studied is not due to (1) the absence of induction of any of the 10 IFN-inducible genes we studied, including the low-molecular- weight 2′-5′oligoadenylate synthetase; (2) the presence of an antagonist of IFN-alpha in the peripheral blood or bone marrow cells; and (3) the presence of neutralizing anti-IFN-alpha antibodies.


Blood ◽  
1987 ◽  
Vol 70 (3) ◽  
pp. 873-876
Author(s):  
TS Ganesan ◽  
GL Min ◽  
JM Goldman ◽  
BD Young

Four patients with Philadelphia (Ph′) positive chronic myeloid leukemia (CML) were studied before, after, and on relapse following allogeneic bone marrow transplantation (BMT). Southern analysis of DNA from cells collected before and at relapse after BMT was performed in order to investigate the origin of the leukemia at relapse. Using minisatellite probes we showed that the relapse occurred in cells of host origin in all four patients and this was confirmed with a Y chromosome specific probe in two male patients who had a female donor. Furthermore, using two probes for the breakpoint cluster region (bcr) on chromosome 22, we showed that leukemic cells at relapse bore identical rearrangements to those in the disease at time of presentation of each patient. We conclude that relapse in all four patients is due to re-emergence of the original leukemic clone.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5180-5180
Author(s):  
Jian Huang ◽  
Jingxia Jin ◽  
Shuna Luo ◽  
Xingnong Ye

Acute myeloid leukemia(AML) originates from the abnormal clonal proliferation of myeloblast which often combined with clinical symptoms. Cytogenetic and molecular abnormalities are frequent in AML patience. To date, the driver genes for leukemia remain largely undiscovered. Monoclonal immunoglobulinemia is a group of diseases caused by excessive proliferation of plasma cells or immunoglobulin-producing lymphoid plasma cells and B lymphocytes. It can develop into malignant plasma cell disease. Herein, we report a AML patient was concomitant with monoclonal immunoglobulinemia, the patient was also accompanied by BCOR mutation and TLS-ERG fusion gene. A 55-year-old married female was admitted into our hospital due to repeated edema for 3 weeks. On admission, peripheral blood counts: PLT142×10^9/L, HB77g/L↓, WBC35.2×10^9/L.Bone marrow examination showed the mononuclear cell system proliferated actively, and the primitive infantile monocytes accounted for 86%. Cell morphology suggested M5b(Figure1A ). Fusion gene screening in bone marrow revealed that TLS-ERG expression. Immunophenotype of bone marrow cell:Abnormal myeloid primitive cells accounted for 96.39% of the nuclear cells,expressCD33, CD13, CD123, CD34, CD9, MPO(Figure 1D). Karyotype analysis of bone marrow cells showed in Figure 1B. Thus, AML was diagnosed. Next-generation DNA sequencing technology showed that BCOR (51.7%),PLCG1(49.9%),DIS3(48.4%),BRAF(51.6%), JAK2(45.1%) ,JAK3(49.0%) were mutated. Meanwhile, we found that Peripheral blood immunofixation electrophoresis showed that Gamma region is seen with a monoclonal light chain lambda component((Figure 1C.).Then, the patient underwent one cycle of IA(Idabisine hydrochloride 10mg d1-4, cytarabine 0.075g q12h d1-7). Twenty-five after chemotherapy onset, bone marrow examination showed that primitive and immature monocytes accounted for 3%. Chromosome become normal. Minimal residual disease(MRD):0.01%. The disease reached complete remission(CR). Peripheral blood immunofixation electrophoresis turned negative. Fusion gene detection showed that TLS-ERG turned negative. BCOR mutation was not detected by Next-generation DNA sequencing. Mutations of PLCG1,DIS3,BRAF,JAK2,JAK3 still exist. Monoclonal immunoglobulinemia and AML are both clonal diseases, but originated from different clones. This case has both malignant clones of granulocyte stem cell and malignant clones of B line, so it is worthy of discussion. By comparing CR before and after we found that while the patient's M protein turned negative, the TLS-ERG fusion gene and BCOR gene mutation also disappeared. The TLS-ERG fusion gene is formed by the rearrangement of TLS and ERG genes on chromosomes 16 and 21. The current study holds that the expression of this fusion gene indicates rapid disease progression and poor prognosis. BCOR mutations can be found in AML and often coincide with DNMT3 gene mutations, suggesting it may affect the occurrence of leukemia through epigenetics. BCOR is a newly discovered corepressor of BCL-6, which can play a supporting role when BCOR combines with DNA; when BCOR is overexpressed, it can enhance the inhibition of BCL-6. BCL-6 is highly expressed in tumor cells,it encodes transcriptional repressors which are required for the formation of germinal center and may affect apoptosis. We thinked that the monoclonal immunoglobulinemia of this patient may caused by the BCOR abnormal expression which increased the inhibitory effect of BCL-6 and affect the apoptosis of B cells, and B cells continue to secrete immunoglobulin. BCOR mutations are associated with poor prognosis. The patient with TLS-ERG fusion gene which is a poor prognosis gene.However, the BCOR gene mutation site is a non-hot spot mutation which has few clinical studies. Whether the BCOR gene mutation results in the combination of the two diseases requires further study. Acknowledgment:The research was supported by fundings of the public technology research projects of Yiwu,China (2016-S-05), the key medical discipline of Yiwu,China(Hematology,2018-2020),and the academician workstation of the Fourth Affiliated Hospital of Zhejiang University School of Medicine. Correspondence to: Dr Jian Huang, Department of Hematology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine. N1 Shangcheng Road. Yiwu, Zhejiang, Peoples R China. Email: [email protected] Figure 1 Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document