scholarly journals Rapid identification of a major diffusion/perfusion mismatch in distal internal carotid artery or middle cerebral artery ischemic stroke

BMC Neurology ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Reza Hakimelahi ◽  
Albert J Yoo ◽  
Julian He ◽  
Lee H Schwamm ◽  
Michael H Lev ◽  
...  
2016 ◽  
Vol 9 (12) ◽  
pp. 1238-1242 ◽  
Author(s):  
Chien-Wei Chen ◽  
Ho-Fai Wong ◽  
Yu-Ling Ye ◽  
Yao-Liang Chen ◽  
Wei-Liang Chen ◽  
...  

ObjectivesTo evaluate the differences in arterial flow after flow diverter placement using quantitative flow measurements based on digital subtraction angiography (DSA).MethodsBetween November 2013 and November 2015, all patients who had flow diverters placed for distal internal carotid artery (ICA) aneurysms were reviewed. Patients in whom the stent was placed across the ostia of the ophthalmic artery (OphA) and anterior choroidal artery (AChA) were enrolled. Five regions of interest were selected: the proximal ICA (as a reference), terminal ICA, middle cerebral artery (MCA), anterior cerebral artery (ACA), OphA, and AChA. The values of the peak, time-to-peak (TTP), and area under the curve (AUC) were analyzed using a quantitative DSA technique.ResultsThe study enrolled 13 patients. The quantitative flow analysis showed improved flow in the terminal ICA (peak and AUC, p=0.036 and p=0.04, respectively), MCA (AUC, p=0.023), and ACA (AUC, p=0.006), and decreased flow in the OphA (peak and AUC, p=0.013 and p=0.005, respectively) and AChA (peak and subtracted TTP, p=0.023 and p=0.050, respectively) after flow diverter placement. Larger aneurysm volume was significantly correlated with decreased OphA flow after the procedure (peak and AUC, p=0.049 and p=0.037, respectively). Larger aneurysm volume also had a marginal correlation with increased distal ICA flow after the procedure, but this did not reach significance (peak and AUC, p=0.195 and p=0.060, respectively).ConclusionsWithout using extra contrast medium or radiation dosages, color-coded DSA enables quantitative monitoring of the cerebral circulation after flow-diverting treatment.


2019 ◽  
Vol 10 ◽  
pp. 205
Author(s):  
Seiei Torazawa ◽  
Hideaki Ono ◽  
Tomohiro Inoue ◽  
Takeo Tanishima ◽  
Akira Tamura ◽  
...  

Background: Very large and giant aneurysms (≥20 mm) of the internal carotid artery (ICA) bifurcation (ICAbif) are definitely rare, and optimal treatment is not established. Endovascular treatments are reported as suboptimal due to difficulties of complete occlusion and tendencies to recanalization. Therefore, direct surgery remains an effective strategy if the clipping can be performed safely and reliably, although very difficult. Case Description: Two cases of ICAbif aneurysms (>20 mm) were treated. Prior assistant superficial temporal artery (STA)-middle cerebral artery (MCA) bypass was performed to avoid ischemic complications during prolonged temporary occlusion of the arteries in both cases. In Case 1 (22-mm aneurysm), the dome was inadvertently torn in applying the clip because trapping had resulted in insufficient decompression. Therefore, in Case 2 (28-mm aneurysm), almost complete trapping of the aneurysm and subsequent dome puncture was performed, and the aneurysm was totally deflated by suction from the incision. This complete aneurysm decompression allowed safe dissection and successful clipping. Conclusion: Trapping, deliberate aneurysm dome puncture, and suction decompression from the incision in conjunction with assistant STA-MCA bypass can achieve complete aneurysm deflation, and these techniques enable safe dissection of the aneurysm and direct clipping of the aneurysm neck. Direct clipping with this technique for very large and giant ICAbif aneurysms may be the optimal treatment choice with the acceptable outcome if endovascular treatment remains suboptimal.


Neurosurgery ◽  
2017 ◽  
Vol 80 (2) ◽  
pp. 235-247 ◽  
Author(s):  
Christopher M. Owen ◽  
Nicola Montemurro ◽  
Michael T. Lawton

Abstract BACKGROUND: Blister aneurysms of the supraclinoid internal carotid artery (ICA) are challenging lesions with high intraoperative rupture rates and significant morbidity. An optimal treatment strategy for these aneurysms has not been established. OBJECTIVE: To analyze treatment strategy, operative techniques, and outcomes in a consecutive 17-year series of ICA blister aneurysms treated microsurgically. METHODS: Seventeen patients underwent blister aneurysm treatment with direct clipping, bypass and trapping, or clip-reinforced wrapping. RESULTS: Twelve aneurysms (71%) were treated with direct surgical clipping. Three patients required bypass: 1 superficial temporal artery to middle cerebral artery bypass, 1 external carotid artery to middle cerebral artery bypass, and 1 ICA to middle cerebral artery bypass. One patient was treated with clip-reinforced wrapping. Initial treatment strategy was enacted 71% of the time. Intraoperative rupture occurred in 7 patients (41%), doubling the rate of a poor outcome (57% vs 30% for patients with and without intraoperative rupture, respectively). Severe vasospasm developed in 9 of 16 patients (56%). Twelve patients (65%) were improved or unchanged after treatment, and 10 patients (59%) had good outcomes (modified Rankin Scale scores of 1 or 2). CONCLUSION: ICA blister aneurysms can be cautiously explored and treated with direct clipping as the first-line technique in the majority of cases. Complete trapping of the parent artery with temporary clips and placing permanent clip blades along normal arterial walls enables clipping that avoids intraoperative aneurysm rupture. Trapping/bypass is used as the second-line treatment, maintaining a low threshold for bypass with extensive or friable pathology of the carotid wall and in patients with incomplete circles of Willis.


2010 ◽  
pp. 504-517
Author(s):  
George Samandouras

Chapter 9.1 covers critical neurovascular brain anatomy, including internal carotid artery, the middle cerebral artery, the anterior cerebral artery, the vertebral arteries (VAs), the basilar artery (BA), and the venous system.


Stroke ◽  
2020 ◽  
Vol 51 (5) ◽  
pp. 1596-1599
Author(s):  
Mary Clare McKenna ◽  
Noel Fanning ◽  
Simon Cronin

Background and Purpose— Focal cerebral arteriopathy is monophasic inflammatory stenosis of the distal internal carotid artery or the proximal segment of the middle cerebral artery. It is one of the most common causes of acute arterial ischemic stroke in young children but is a less familiar entity for adult neurologists. Methods— We retrospectively reviewed stroke service radiology records at a tertiary referral center from January 2013 to December 2014. Focal cerebral arteriopathy was defined as nonprogressive unifocal and unilateral stenosis/irregularity of the distal internal carotid artery or its proximal branches. Only patients aged 16 to 55 years with stroke were included. Results— There were 5 cases of focal cerebral arteriopathy: 2 males and 3 females. Three cases were from the cohort of 123 acute presentations of young stroke, and 2 cases were outpatient referrals. The mean age (range) was 43 (32–55) years. The majority presented with recurrent transient ischemic attacks/minor strokes within a single vascular territory over days to weeks. All cases had characteristic radiological features. Interval imaging demonstrated resolution in 1 case and improvement in 3 cases. Functional outcome was excellent with discharge modified Rankin Scale score ranging from 0 to 1. Recurrence occurred in 1 case. Conclusions— Focal cerebral arteriopathy is a rare cause of arterial ischemic stroke in young adults. Follow-up intracranial imaging is essential to differentiate from progressive arteriopathies. Evidence-based treatment warrants further investigation. Prognosis is favorable.


1988 ◽  
Vol 8 (5) ◽  
pp. 697-712 ◽  
Author(s):  
Norihiro Suzuki ◽  
Jan Erik Hardebo ◽  
Christer Owman

In order to clarify the origins and pathways of vasoactive intestinal polypeptide (VlP)-containing nerve fibers in cerebral blood vessels of rat, denervation experiments and retrograde axonal tracing methods (true blue) were used. Numerous VIP-positive nerve cells were recognized in the sphenopalatine ganglion and in a mini-ganglion (internal carotid mini-ganglion) located on the internal carotid artery in the carotid canal, where the parasympathetic greater superficial petrosal nerve is joined by the sympathetic fibers from the internal carotid nerve, to form the Vidian nerve. VIP fiber bridges in the greater deep petrosal nerve and the internal carotid nerve reached the wall of the internal carotid artery. Two weeks after bilateral removal of the sphenopalatine ganglion or sectioning of the structures in the ethmoidal foramen, VIP fibers in the anterior part of the circle of Willis completely disappeared. Very few remained in the middle cerebral artery, the posterior cerebral artery, and rostral two-thirds of the basilar artery, whereas they remained in the caudal one-third of the basilar artery, the vertebral artery, and intracranial and carotid canal segments of the internal carotid artery. One week after application of true blue to the middle cerebral artery, dye accumulated in the ganglion cells in the sphenopalatine, otic and internal carotid mini-ganglion; some of the cells were positive for VIP. The results show that the VIP nerves in rat cerebral blood vessels originate: (a) in the sphenopalatine, and otic ganglion to innervate the circle of Willis and its branches from anterior and caudally and (b) from the internal carotid mini-ganglion to innervate the internal carotid artery at the level of the carotid canal and to some extent its intracranial extensions.


Brain ◽  
1970 ◽  
Vol 93 (1) ◽  
pp. 199-210 ◽  
Author(s):  
FRANZ SINDERMANN ◽  
DORIS BECHINGER ◽  
JOHANNES DICHGANS

Sign in / Sign up

Export Citation Format

Share Document