scholarly journals The primary complement components contained in circulating immune complexes in oligoarticular and polyarticular juvenile idiopathic arthritis patient sera are C1q and C4: evidence of classical complement activation

2012 ◽  
Vol 10 (S1) ◽  
Author(s):  
Brooke E Gilliam ◽  
Melinda R Reed ◽  
Anil K Chauhan ◽  
Amanda Dehlendorf ◽  
Sandra Crespo-Pagnussat ◽  
...  
1981 ◽  
Vol 31 (2) ◽  
pp. 530-535 ◽  
Author(s):  
C Adam ◽  
M Géniteau ◽  
M Gougerot-Pocidalo ◽  
P Verroust ◽  
J Lebras ◽  
...  

2001 ◽  
Vol 194 (6) ◽  
pp. 747-756 ◽  
Author(s):  
Anthony P. Manderson ◽  
Matthew C. Pickering ◽  
Marina Botto ◽  
Mark J. Walport ◽  
Christopher R. Parish

There is evidence that the classical complement pathway may be activated via a “C1-tickover” mechanism, analogous to the C3-tickover of the alternative pathway. We have quantitated and characterized this pathway of complement activation. Analysis of freshly collected mouse and human plasma revealed that spontaneous C3 activation rapidly occurred with the generation of C3 fragments in the plasma. By the use of complement- and Ig-deficient mice it was found that C1q, C4, C2, and plasma Ig were all required for this spontaneous C3 activation, with the alternative complement pathway further amplifying C3 fragment generation. Study of plasma from a human with C1q deficiency before and after therapeutic C1q infusion confirmed the existence of a similar pathway for complement activation in humans. Elevated levels of plasma C3 were detected in mice deficient in complement components required for activation of either the classical or alternative complement pathways, supporting the hypothesis that there is continuous complement activation and C3 consumption through both these pathways in vivo. Blood stasis was found to stimulate C3 activation by classical pathway tick-over. This antigen-independent mechanism for classical pathway activation may augment activation of the complement system at sites of inflammation and infarction.


2021 ◽  
Author(s):  
Rachel E Lamerton ◽  
Edith Marcial Juarez ◽  
Sian E Faustini ◽  
Marisol E Perez-Toledo ◽  
Margaret Goodall ◽  
...  

Antibodies specific for the spike glycoprotein (S) and nucleocapsid (N) SARS-CoV-2 proteins are typically present during severe COVID-19, and induced to S after vaccination. The binding of viral antigens by antibody can initiate the classical complement pathway. Since complement could play pathological or protective roles at distinct times during SARS-CoV-2 infection we determined levels of antibody-dependent complement activation along the complement cascade. Here, we used an ELISA assay to assess complement protein binding (C1q) and the deposition of C4b, C3b, and C5b to S and N antigens in the presence of anti-SARS-CoV-2 antibodies from different test groups: non-infected, single and double vaccinees, non-hospitalised convalescent (NHC) COVID-19 patients and convalescent hospitalised (ITU-CONV) COVID-19 patients. C1q binding correlates strongly with antibody responses, especially IgG1 levels. However, detection of downstream complement components, C4b, C3b and C5b shows some variability associated with the antigen and subjects studied. In the ITU-CONV, detection of C3b-C5b to S was observed consistently, but this was not the case in the NHC group. This is in contrast to responses to N, where median levels of complement deposition did not differ between the NHC and ITU-CONV groups. Moreover, for S but not N, downstream complement components were only detected in sera with higher IgG1 levels. Therefore, the classical pathway is activated by antibodies to multiple SARS-CoV-2 antigens, but the downstream effects of this activation may differ depending on the specific antigen targeted and the disease status of the subject.


2021 ◽  
Vol 12 ◽  
Author(s):  
Dilini Rathnayake ◽  
Elizabeth H. Aitken ◽  
Stephen J. Rogerson

Antibody immunity against malaria is effective but non-sterile. In addition to antibody-mediated inhibition, neutralisation or opsonisation of malaria parasites, antibody-mediated complement activation is also important in defense against infection. Antibodies form immune complexes with parasite-derived antigens that can activate the classical complement pathway. The complement system provides efficient surveillance for infection, and its activation leads to parasite lysis or parasite opsonisation for phagocytosis. The induction of complement-fixing antibodies contributes significantly to the development of protective immunity against clinical malaria. These complement-fixing antibodies can form immune complexes that are recognised by complement receptors on innate cells of the immune system. The efficient clearance of immune complexes is accompanied by complement receptor internalisation, abrogating the detrimental consequences of excess complement activation. Here, we review the mechanisms of activation of complement by alternative, classical, and lectin pathways in human malaria at different stages of the Plasmodium life cycle with special emphasis on how complement-fixing antibodies contribute to protective immunity. We briefly touch upon the action of anaphylatoxins, the assembly of membrane attack complex, and the possible reasons underlying the resistance of infected erythrocytes towards antibody-mediated complement lysis, relevant to their prolonged survival in the blood of the human host. We make suggestions for further research on effector functions of antibody-mediated complement activation that would guide future researchers in deploying complement-fixing antibodies in preventive or therapeutic strategies against malaria.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2664-2664
Author(s):  
Wei Yin ◽  
Babette Weksler ◽  
David Varon ◽  
Naphtali Savion ◽  
Berhane Ghebrehiwet ◽  
...  

Abstract Complement activation is associated with a variety of inflammatory conditions including atherosclerosis, but the mechanism of complement activation in these settings is poorly understood. Endothelial cells (EC) play an important role in vascular pathology and express a variety of complement receptors, including gC1qR/p33, recognizing the globular domain of the complement component C1q. In preliminary studies, purified recombinant gC1qR/p33 was found to support C1q-dependent C4 activation in vitro, comprising 19.5% ± 8.3% (mean ± S.D., n=5) of that produced by aggregated IgG. In contrast, a truncated form of gC1qR/p33, lacking the C1q binding domain, failed to support C4 activation. Additional studies were performed with immortalized bone marrow microvascular EC to investigate classical complement pathway activation and deposition. EC were exposed to anticoagulated (0.32 % sodium citrate) human plasma, diluted (1/10) in 0.01 M HEPES buffered modified Tyrode’s solution, pH 7.5, containing 2 mM Mg Cl2 and 1 mM CaCl2, for 60 min, 37°C. A solid phase ELISA approach was used to detect EC-associated C1q and C4 activation (C4d). Statistically significant deposition of C4d (0.72 ± 0.3. OD units (ODU), n=4)(p=0.04) and C1q (0.57 ± 0.19. ODU, n=4) (p=0.002) was observed on EC that had been immobilized on poly-L-lysine coated microtiter wells. Consistent with classical complement pathway activation, C4d deposition remained at baseline (0.23 ± 0.13, ODU, n=4) in the presence of 10 mM EDTA, but C1q deposition was unaffected. Moreover, no significant C1q or C4d deposition occurred when endothelial cells were exposed to C1q depleted serum. Similar studies were performed using EC grown to confluence on Type I collagen to examine the effect of shear stress (12 dynes/cm2 for 1 hour in a cone-and-plate shearing device), simulating flow conditions in coronary arteries, on classical complement pathway activation and deposition. Compared to static conditions, shear stress resulted in an approximately 50% increase in C1q and C4d deposition on EC. This was accompanied by an approximately 2-fold increase in EC binding of a monoclonal antibody, 60.11, recognizing the N-terminal C1q binding domain of gC1qR/p33. Taken together, these data present evidence for a potential paradigm shift, illustrating immune complex independent classical complement pathway activation by gC1qR/p33, and deposition of activated classical complement components on EC. The generation and deposition of active complement components on EC is likely to contribute directly to vascular inflammation and atherosclerotic changes.


2009 ◽  
Vol 3 (7) ◽  
pp. 829-840 ◽  
Author(s):  
Jason M. Low ◽  
Anil K. Chauhan ◽  
David S. Gibson ◽  
Mengmeng Zhu ◽  
Sixue Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document