scholarly journals Source model of the 2007 Noto-Hanto earthquake (Mw 6.7) for estimating broad-band strong ground motion

2008 ◽  
Vol 60 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Susumu Kurahashi ◽  
Kazuaki Masaki ◽  
Kojiro Irikura
2020 ◽  
Vol 110 (2) ◽  
pp. 452-470
Author(s):  
Masato Tsurugi ◽  
Reiji Tanaka ◽  
Takao Kagawa ◽  
Kojiro Irikura

ABSTRACT We examined high-frequency spectral decay characteristics of ground motions for inland crustal earthquakes in Japan, which are important in strong ground motion predictions. We examined 105 earthquakes (Mw 3.3–7.1), including seven large earthquakes (Mw 5.9–7.1). Spectral decay characteristics were accurately evaluated assuming the ω-squared source model and using two approaches: the fmax model (commonly used in Japan), described by the cutoff frequency fmax and the power coefficient of spectral decay s, and the κ model (commonly used in worldwide), the exponential spectral decay model, described by the parameter κ and the specific frequency fE at which a spectrum starts to decrease linearly with increasing frequency in log–linear space. For large earthquakes, we estimated fmax to range from 6.5 to 9.9 Hz and s from 0.78 to 1.60 in the fmax model, and κ to range from 0.014 to 0.051 s and fE from 2 to 4.5 Hz in the κ model. In both approaches, we found that the spectral decay characteristics are regionally dependent. fmax in the fmax model and fE in the κ model tended to be smaller for large earthquakes than for moderate and small earthquakes, clearly demonstrating a seismic moment dependency. We confirmed positive correlations between equivalent parameters of the two approaches, that is, between s and κ and between fmax and fE. Moreover, we found that both approaches are appropriate for evaluating spectral decay characteristics, as long as the spectral decay parameters are appropriately evaluated by comparison with observed spectra. We examined the effects of the spectral decay characteristics on strong ground motion predictions, and demonstrated that simulated motions corrected using the fmax model and those corrected using the κ model are almost the same. The results presented in this article contribute to improving predictions of high-frequency strong ground motion.


2021 ◽  
Vol 13 (20) ◽  
pp. 4138
Author(s):  
Yongzhe Wang ◽  
Kun Chen ◽  
Ying Shi ◽  
Xu Zhang ◽  
Shi Chen ◽  
...  

On 21 May 2021, an Mw 6.1 earthquake, causing considerable seismic damage, occurred in Yangbi County, Yunnan Province of China. To better understand the surface deformation pattern, source characteristics, seismic effect on nearby faults, and strong ground motion, we processed the ascending and descending SAR images using the interferometric synthetic aperture radar (InSAR) technique to capture the radar line-of-sight (LOS) directional and 2.5-dimensional deformation. The source model was inverted from the LOS deformation observations. We further analyzed the Coulomb failure stress (CFS) transfer and peak ground acceleration (PGA) simulation based on the preferred source model. The results suggest that the 2021 Yangbi earthquake was dextral faulting with the maximum slip of 0.9 m on an unknown blind shallow fault, and the total geodetic moment was 1.4 × 1018 Nm (Mw 6.06). Comprehensive analysis of the CFS transfer and geological tectonics suggests that the Dian–Xibei pull-apart basin is still suffering high seismic hazards. The PGA result demonstrates that the seismic intensity of this event reached up to VIII. The entire process from InSAR deformation to source modeling and strong ground motion simulation suggests that the InSAR technique will play an important role in the assessment of earthquake disasters in the case of the shortening of the SAR imaging interval.


2009 ◽  
Vol 29 (3) ◽  
pp. 483-503 ◽  
Author(s):  
S.T.G. Raghu Kanth ◽  
R.N. Iyengar

Sign in / Sign up

Export Citation Format

Share Document