scholarly journals Improved geoid model determination for Japan from GRACE and a regional gravity field model

2009 ◽  
Vol 61 (7) ◽  
pp. 807-813 ◽  
Author(s):  
Yuki Kuroishi
2018 ◽  
Vol 123 (11) ◽  
pp. 10,252-10,276 ◽  
Author(s):  
Hao Zhou ◽  
Zhicai Luo ◽  
Zebing Zhou ◽  
Qiong Li ◽  
Bo Zhong ◽  
...  

2018 ◽  
Vol 176 (2) ◽  
pp. 767-786 ◽  
Author(s):  
Mohamed Sobh ◽  
Ahmed Hamdi Mansi ◽  
Simon Campbell ◽  
Jörg Ebbing

2012 ◽  
Vol 329-330 ◽  
pp. 22-30 ◽  
Author(s):  
C. Hirt ◽  
W.E. Featherstone

2021 ◽  
Author(s):  
Mirko Scheinert ◽  
Philipp Zingerle ◽  
Theresa Schaller ◽  
Roland Pail ◽  
Martin Willberg

<p>In the frame of the IAG Subcommission 2.4f “Gravity and Geoid in Antarctica” (AntGG) a first Antarctic-wide grid of ground-based gravity anomalies was released in 2016 (Scheinert et al. 2016). That data set was provided with a grid space of 10 km and covered about 73% of the Antarctic continent. Since then a considerably amount of new data has been made available, mainly collected by means of airborne gravimetry. Regions which were formerly void of any terrestrial gravity observations and have now been surveyed include especially the polar data gap originating from GOCE satellite gravimetry. Thus, it is timely to come up with an updated and enhanced regional gravity field solution for Antarctica. For this, we aim to improve further aspects in comparison to the AntGG 2016 solution: The grid spacing will be enhanced to 5 km. Instead of providing gravity anomalies only for parts of Antarctica, now the entire continent should be covered. In addition to the gravity anomaly also a regional geoid solution should be provided along with further desirable functionals (e.g. gravity anomaly vs. disturbance, different height levels).</p><p>We will discuss the expanded AntGG data base which now includes terrestrial gravity data from Antarctic surveys conducted over the past 40 years. The methodology applied in the analysis is based on the remove-compute-restore technique. Here we utilize the newly developed combined spherical-harmonic gravity field model SATOP1 (Zingerle et al. 2019) which is based on the global satellite-only model GOCO05s and the high-resolution topographic model EARTH2014. We will demonstrate the feasibility to adequately reduce the original gravity data and, thus, to also cross-validate and evaluate the accuracy of the data especially where different data set overlap. For the compute step the recently developed partition-enhanced least-squares collocation (PE-LSC) has been used (Zingerle et al. 2021, in review; cf. the contribution of Zingerle et al. in the same session). This method allows to treat all data available in Antarctica in one single computation step in an efficient and fast way. Thus, it becomes feasible to iterate the computations within short time once any input data or parameters are changed, and to easily predict the desirable functionals also in regions void of terrestrial measurements as well as at any height level (e.g. gravity anomalies at the surface or gravity disturbances at constant height).</p><p>We will discuss the results and give an outlook on the data products which shall be finally provided to present the new regional gravity field solution for Antarctica. Furthermore, implications for further applications will be discussed e.g. with respect to geophysical modelling of the Earth’s interior (cf. the contribution of Schaller et al. in session G4.3).</p>


2020 ◽  
Vol 94 (7) ◽  
Author(s):  
P. Zingerle ◽  
R. Pail ◽  
T. Gruber ◽  
X. Oikonomidou

2020 ◽  
Vol 222 (1) ◽  
pp. 661-677
Author(s):  
Hao Zhou ◽  
Zebing Zhou ◽  
Zhicai Luo ◽  
Kang Wang ◽  
Min Wei

SUMMARY The goal of this contribution is to investigate the expected improvement of temporal gravity field determination via a couple of high-low satellite-to-satellite tracking (HLSST) missions. The simulation system is firstly validated by determining monthly gravity field models within situ GRACE GPS tracking data. The general consistency between the retrieved solutions and those developed by other official agencies indicates the good performance of our software. A 5-yr full-scale simulation is then performed using the full error sources including all error components. Analysis of each error component indicates that orbit error is the main contributor to the overall HLSST-derived gravity field model error. The noise level of monthly solution is therefore expected to reduce 90 per cent in terms of RMSE over ocean when the orbit accuracy improves for a magnitude of one order. As for the current HLSST mission consisting of a current GNSS receiver and an accelerometer (10−10 and 10−9 m s–2 noise for sensitive and non-sensitive axes), it is expected to observe monthly (or weekly) gravity solution at the spatial resolution of about 1300 km (or 2000 km). As for satellite constellations, a significant improvement is expected by adding the second satellite with the inclination of 70° and the third satellite with the inclination of 50°. The noise reduction in terms of cumulative geoid height error is approximately 51 per cent (or 62 per cent) when the observations of two (or three) HLSST missions are used. Moreover, the accuracy of weekly solution is expected to improve 40–70 per cent (or 27–59 per cent) for three (or two) HLSST missions when compared to one HLSST mission. Due to the low financial costs, it is worthy to build a satellite constellation of HLSST missions to fill the possible gaps between the dedicated temporal gravity field detecting missions.


Sign in / Sign up

Export Citation Format

Share Document