terrestrial gravity
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 39)

H-INDEX

17
(FIVE YEARS 1)

2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2021 ◽  
Vol 6 (24) ◽  
pp. 213-225
Author(s):  
Shazad Jamal Jalal ◽  
Tajul Ariffin Musa ◽  
Ami Hassan Md Din ◽  
Wan Anom Wan Aris

Gravity data and computing gravity anomalies are regarded as vital for both geophysics and physical geodesy fields. The mountainous areas of Iraq are characterized by the lack of regional gravity data because gravity surveys are rarely performed in the past four decades due to the Iraq-Iran war and the internal unstable political situation of this particular region. In addition, the formal map of the available terrestrial gravity which was published by the French Database of Bureau Gravimetrique International (International Gravimetric Bureau-in English) (BGI), introduces Iraq and the study area as a remote area and in white color because of the unavailability of gravity data. However, a dense and local (not regional) gravity data is available which was conducted by geophysics researchers 13 years ago. Therefore, the regional gravity survey of 160 gravity points was performed by the authors at an average 11 km apart, which was covers the whole area of Sulaymaniyah Governorate (part of the mountainous areas of Iraq). In spite of Although the risk of mine fields within the study area, suitable safe routes as well as a helicopter was used for the gravity survey of several points on the top of mountains. The survey was conducted via Lacoste and Romberg geodetic gravimeter and GPS handheld. The objective of the study is to determine and map the gravity anomalies for the entire study area, the data of which would assist different geosciences applications.


2021 ◽  
Vol 9 (12) ◽  
pp. 2416
Author(s):  
Anna H. Kaksonen ◽  
Xiao Deng ◽  
Christina Morris ◽  
Himel Nahreen Khaleque ◽  
Luis Zea ◽  
...  

The biomining microbes which extract metals from ores that have been applied in mining processes worldwide hold potential for harnessing space resources. Their cell growth and ability to extract metals from extraterrestrial minerals under microgravity environments, however, remains largely unknown. The present study used the model biomining bacterium Acidithiobacillus ferrooxidans to extract metals from lunar and Martian regolith simulants cultivated in a rotating clinostat with matched controls grown under the influence of terrestrial gravity. Analyses included assessments of final cell count, size, morphology, and soluble metal concentrations. Under Earth gravity, with the addition of Fe3+ and H2/CO2, A. ferrooxidans grew in the presence of regolith simulants to a final cell density comparable to controls without regoliths. The simulated microgravity appeared to enable cells to grow to a higher cell density in the presence of lunar regolith simulants. Clinostat cultures of A. ferrooxidans solubilised higher amounts of Si, Mn and Mg from lunar and Martian regolith simulants than abiotic controls. Electron microscopy observations revealed that microgravity stimulated the biosynthesis of intracellular nanoparticles (most likely magnetite) in anaerobically grown A. ferrooxidans cells. These results suggested that A. ferrooxidans has the potential for metal bioleaching and the production of useful nanoparticles in space.


2021 ◽  
Author(s):  
◽  
Jack McCubbine

<p>It is important to be able to accurately determine the height of a point on the Earth in terms of the Earth's gravitational potential field. These heights predict how water will flow and so they are vital for engineering and surveying purposes. They are determined using a vertical datum which consists of a specif ed height system and a defined reference surface.  At present, in New Zealand, the o fficial vertical datum is NZVD2009 which uses a normal-orthometric height system and gravimetric quasigeoid, NZGeoid2009, as the reference surface. The aim of this thesis is to develop a more accurate gravimetric quasigeoid than NZGeoid2009, by incorporating new gravity data and utilising a re fined data processing strategy, to establish a better vertical datum for New Zealand.  A new airborne gravimetry data set has been collected which covers the North, South and Stewart Islands of New Zealand with a flight line spacing of 10km. The data were susceptible to short error prone sections of track due to poor (turbulent) flight conditions and mean off sets which separate the recorded gravity data along flight lines by a constant value from neighbouring lines and existing gravity models. The error prone sections of track have been visually identified by assessing the cross track agreement with other flight lines and with the global gravity model EGM2008, and the mean offsets were estimated by a least squares method which takes into consideration the spatially correlated gravity signal.  The repeatability of the data was assessed from data collected from five flights along two separate calibration lines. The mean gravity anomaly pro files calculated along the calibration lines each had a standard deviation of around 2.5 mGal. The internal consistency of the data was assessed by evaluating the diff erence between flight line data at intersection points. This accuracy measure was shown to be influenced by the along track filter, anisotropic topography and the relative flight line elevations. After correcting for all these effects the set of all intersecting differences had a standard deviation of approximately 5.9 mGal.  From an existing terrestrial gravity database, around 40000 observations have been reprocessed to reduce them to Bouguer gravity anomalies, this was done to ensure consistency in the formulas that have been used. A new national 8 m digital elevation model (DEM) was used to calculate terrain corrections and these were carefully compared with terrain corrections estimated from field observations of the topography to reduce any discrepancies in calculating near zone terrain e ffects. The largest source of error in the terrestrial gravity anomaly data is due to inaccurate height estimates of the marks. The height discrepancies have been estimated by comparing the recorded heights in the database to those determined from the 8 m DEM and have been translated into mGal by calculating the propagated effect on the free air and Bouguer slab corrections.  The airborne and terrestrial gravity data, along with a satellite altimetry marine gravity anomaly and existing shipborne gravity data, were assimilated by least squares collocation with a logarithmic covariance function to appropriately deal with the downward continuation of the airborne data, and gridded at 1 arc-minute resolution in the geographical region 25° (S) to 60 ° (S) and 160° (E) to 190° (E). 1 arc-minute block averaged heights were then used to calculate a reverse Bouguer slab correction, which when applied to the gravity data gave a gridded Faye anomaly. Different noise level variances were assigned to the separate data sets to optimally combine them.  Forty six of the most contemporary global gravity models (from 2008 onwards) have each been compared to 1422 leveling and GNSS derived quasigeoid height anomalies. Overall the Eigen-6C4 model fitted the leveling and GNSS derived quasigeoid height anomalies best with a root mean squared error of 5.29cm.  The Eigen-6C4 gravity model was subtracted from the gridded Faye anomaly (remove) and Stokes integral was evaluated on the residual gravity anomaly grid. A, theoretically optimum, modified Stokes kernel has been used and the modification degree L and spherical cap for the integration Ψ₀ were varied over the ranges L = 20; 40; 60; ..., 320 and Ψ₀ = 1° ; 1:5° ; 2° ; 2:5° ; 3° . The Eigen-6C4 geoid undulations were then added back to the residual geoid undulation grids and the primary indirect topographic effect was restored to obtain 80 quasigeoids for each L and Ψ₀ parameter variation.  The optimal parameter choice was determined to be L = 280 and Ψ₀ = 1:5 which had the best agreement with the leveling and GNSS derived quasigeoid height anomalies with a standard deviation of 3.8cm and root mean squared residual of 4.8cm of the differences. This is a 1.25cm improvement on NZGeoid2009. The quasigeoid was also assessed closely in three main urban areas, Auckland, Wellington and Christchurch, where the majority of large scale engineering projects and surveying takes place in New Zealand. Here there were 123, 169 and 125 data points and the standard deviations of the differences were 3.976, 3.385 and 2.071cm and root mean squared differences of 3.58,4.388 and 4.572 cm respectively. This gives an average accuracy of 3.1 cm standard deviation in urban areas which is 1.5 cm better than the average for NZGeoid2009.</p>


2021 ◽  
Author(s):  
◽  
Jack McCubbine

<p>It is important to be able to accurately determine the height of a point on the Earth in terms of the Earth's gravitational potential field. These heights predict how water will flow and so they are vital for engineering and surveying purposes. They are determined using a vertical datum which consists of a specif ed height system and a defined reference surface.  At present, in New Zealand, the o fficial vertical datum is NZVD2009 which uses a normal-orthometric height system and gravimetric quasigeoid, NZGeoid2009, as the reference surface. The aim of this thesis is to develop a more accurate gravimetric quasigeoid than NZGeoid2009, by incorporating new gravity data and utilising a re fined data processing strategy, to establish a better vertical datum for New Zealand.  A new airborne gravimetry data set has been collected which covers the North, South and Stewart Islands of New Zealand with a flight line spacing of 10km. The data were susceptible to short error prone sections of track due to poor (turbulent) flight conditions and mean off sets which separate the recorded gravity data along flight lines by a constant value from neighbouring lines and existing gravity models. The error prone sections of track have been visually identified by assessing the cross track agreement with other flight lines and with the global gravity model EGM2008, and the mean offsets were estimated by a least squares method which takes into consideration the spatially correlated gravity signal.  The repeatability of the data was assessed from data collected from five flights along two separate calibration lines. The mean gravity anomaly pro files calculated along the calibration lines each had a standard deviation of around 2.5 mGal. The internal consistency of the data was assessed by evaluating the diff erence between flight line data at intersection points. This accuracy measure was shown to be influenced by the along track filter, anisotropic topography and the relative flight line elevations. After correcting for all these effects the set of all intersecting differences had a standard deviation of approximately 5.9 mGal.  From an existing terrestrial gravity database, around 40000 observations have been reprocessed to reduce them to Bouguer gravity anomalies, this was done to ensure consistency in the formulas that have been used. A new national 8 m digital elevation model (DEM) was used to calculate terrain corrections and these were carefully compared with terrain corrections estimated from field observations of the topography to reduce any discrepancies in calculating near zone terrain e ffects. The largest source of error in the terrestrial gravity anomaly data is due to inaccurate height estimates of the marks. The height discrepancies have been estimated by comparing the recorded heights in the database to those determined from the 8 m DEM and have been translated into mGal by calculating the propagated effect on the free air and Bouguer slab corrections.  The airborne and terrestrial gravity data, along with a satellite altimetry marine gravity anomaly and existing shipborne gravity data, were assimilated by least squares collocation with a logarithmic covariance function to appropriately deal with the downward continuation of the airborne data, and gridded at 1 arc-minute resolution in the geographical region 25° (S) to 60 ° (S) and 160° (E) to 190° (E). 1 arc-minute block averaged heights were then used to calculate a reverse Bouguer slab correction, which when applied to the gravity data gave a gridded Faye anomaly. Different noise level variances were assigned to the separate data sets to optimally combine them.  Forty six of the most contemporary global gravity models (from 2008 onwards) have each been compared to 1422 leveling and GNSS derived quasigeoid height anomalies. Overall the Eigen-6C4 model fitted the leveling and GNSS derived quasigeoid height anomalies best with a root mean squared error of 5.29cm.  The Eigen-6C4 gravity model was subtracted from the gridded Faye anomaly (remove) and Stokes integral was evaluated on the residual gravity anomaly grid. A, theoretically optimum, modified Stokes kernel has been used and the modification degree L and spherical cap for the integration Ψ₀ were varied over the ranges L = 20; 40; 60; ..., 320 and Ψ₀ = 1° ; 1:5° ; 2° ; 2:5° ; 3° . The Eigen-6C4 geoid undulations were then added back to the residual geoid undulation grids and the primary indirect topographic effect was restored to obtain 80 quasigeoids for each L and Ψ₀ parameter variation.  The optimal parameter choice was determined to be L = 280 and Ψ₀ = 1:5 which had the best agreement with the leveling and GNSS derived quasigeoid height anomalies with a standard deviation of 3.8cm and root mean squared residual of 4.8cm of the differences. This is a 1.25cm improvement on NZGeoid2009. The quasigeoid was also assessed closely in three main urban areas, Auckland, Wellington and Christchurch, where the majority of large scale engineering projects and surveying takes place in New Zealand. Here there were 123, 169 and 125 data points and the standard deviations of the differences were 3.976, 3.385 and 2.071cm and root mean squared differences of 3.58,4.388 and 4.572 cm respectively. This gives an average accuracy of 3.1 cm standard deviation in urban areas which is 1.5 cm better than the average for NZGeoid2009.</p>


2021 ◽  
Vol 56 (3) ◽  
pp. 78-100
Author(s):  
Eyasu Alemu

Abstract To estimate Moho depth, geoid, gravity anomaly, and other geopotential functionals, gravity data is needed. But, gravity survey was not collected in equal distribution in Ethiopia, as the data forming part of the survey were mainly collected on accessible roads. To determine accurate Moho depth using Global Gravity Models (GGMs) for the study area, evaluation of GGMs is needed based on the available terrestrial gravity data. Moho depth lies between 28 km and 32 km in Afar. Gravity disturbances (GDs) were calculated for the terrestrial gravity data and the recent GGMs for the study area. The model-based GDs were compared with the corresponding GD obtained from the terrestrial gravity data and their differences in terms of statistical comparison parameters for determining the best fit GGM at a local scale in Afar. The largest standard deviation (SD) (36.10 mGal) and root mean square error (RMSE) (39.00 mGal) for residual GD and the lowest correlation with the terrestrial gravity (0.61 mGal) were obtained by the satellite-only model (GO_CONS_GCF_2_DIR_R6). The next largest SD (21.27 mGal) and RMSE (25.65 mGal) for residual GD were obtained by the combined gravity model (XGM2019e_2159), which indicates that it is not the best fit model for the study area as compared with the other two GGMs. In general, the result showed that the combined models are more useful tools for modeling the gravity field in Afar than the satellite-only GGMs. But, the study clearly revealed that for the study area, the best model in comparison with the others is the EGM2008, while the second best model is the EIGEN6C4.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Mostafa Ahmed Elwan ◽  
Ahmad Helaly ◽  
Khaled Zharan ◽  
Elsayed Issawy ◽  
Ahmed Abd El-Gawad

2021 ◽  
Vol 9 (3) ◽  
pp. 124-133
Author(s):  
Rachel Ngo Nyouma ◽  
Henri Emile Pougue Eone ◽  
Yvonne Poufone Koffi ◽  
Edouard Olivier Ntomb Biboum ◽  
Alain Sterve Lepatio Tchieg ◽  
...  
Keyword(s):  

2021 ◽  
Vol 17 (6) ◽  
pp. 20210115
Author(s):  
Maria Gallagher ◽  
Breanne Kearney ◽  
Elisa Raffaella Ferrè

Knowing where our limbs are in space is crucial for a successful interaction with the external world. Joint position sense (JPS) relies on both cues from muscle spindles and joint mechanoreceptors, as well as the effort required to move. However, JPS may also rely on the perceived external force on the limb, such as the gravitational field. It is well known that the internal model of gravity plays a large role in perception and behaviour. Thus, we have explored whether direct vestibular-gravitational cues could influence JPS. Participants passively estimated the position of their hand while they were upright and therefore aligned with terrestrial gravity, or pitch-tilted 45° backwards from gravity. Overall participants overestimated the position of their hand in both upright and tilted postures; however, the proprioceptive bias was significantly reduced when participants were tilted. Our findings therefore suggest that the internal model of gravity may influence and update JPS in order to allow the organism to interact with the environment.


2021 ◽  
Vol 95 (5) ◽  
Author(s):  
Matej Varga ◽  
Martin Pitoňák ◽  
Pavel Novák ◽  
Tomislav Bašić

AbstractThis paper studies the contribution of airborne gravity data to improvement of gravimetric geoid modelling across the mountainous area in Colorado, USA. First, airborne gravity data was processed, filtered, and downward-continued. Then, three gravity anomaly grids were prepared; the first grid only from the terrestrial gravity data, the second grid only from the downward-continued airborne gravity data, and the third grid from combined downward-continued airborne and terrestrial gravity data. Gravimetric geoid models with the three gravity anomaly grids were determined using the least-squares modification of Stokes’ formula with additive corrections (LSMSA) method. The absolute and relative accuracy of the computed gravimetric geoid models was estimated on GNSS/levelling points. Results exhibit the accuracy improved by 1.1 cm or 20% in terms of standard deviation when airborne and terrestrial gravity data was used for geoid computation, compared to the geoid model computed only from terrestrial gravity data. Finally, the spectral analysis of surface gravity anomaly grids and geoid models was performed, which provided insights into specific wavelength bands in which airborne gravity data contributed and improved the power spectrum.


Sign in / Sign up

Export Citation Format

Share Document