geoid model
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 93)

H-INDEX

14
(FIVE YEARS 2)

2022 ◽  
Vol 9 ◽  
Author(s):  
Hamad Al-Ajami ◽  
Ahmed Zaki ◽  
Mostafa Rabah ◽  
Mohamed El-Ashquer

A new gravimetric geoid model, the KW-FLGM2021, is developed for Kuwait in this study. This new geoid model is driven by a combination of the XGM2019e-combined global geopotential model (GGM), terrestrial gravity, and the SRTM 3 global digital elevation model with a spatial resolution of three arc seconds. The KW-FLGM2021 has been computed by using the technique of Least Squares Collocation (LSC) with Remove-Compute-Restore (RCR) procedure. To evaluate the external accuracy of the KW-FLGM2021 gravimetric geoid model, GPS/leveling data were used. As a result of this evaluation, the residual of geoid heights obtained from the KW-FLGM2021 geoid model is 2.2 cm. The KW-FLGM2021 is possible to be recommended as the first accurate geoid model for Kuwait.


2021 ◽  
Vol 936 (1) ◽  
pp. 012034
Author(s):  
Hamidatul Aminah ◽  
Ira Mutiara Anjasmara

Abstract Geoid model was chosen as a vertical reference in Indonesia based on the Head of the Geospatial Information Agency Regulation (Perka BIG) No. 15 of 2013 concerning the Indonesian Geospatial Reference System (SRGI2013). Therefore, the development of local geoid models continues to be carried out to obtain good accuracy. The geoid is formed through three main components: long wave, short wave, and medium wave. One of the longwave components is the global geopotential model obtained from topographic, terrestrial, altimetry, and gravity satellite data. Along with the development of technology and gravity observation methods, the global model has many variations, so it is necessary to determine the global model that is most suitable for the geographical conditions in Indonesia. EGM2008 is often used in local geoid modeling in Indonesia based on research that compares several global models. Still, it does not rule out the possibility of a new global model that is more suitable for Indonesia.


2021 ◽  
Vol 936 (1) ◽  
pp. 012029
Author(s):  
Zahroh Arsy Udama ◽  
Ira Mutiara Anjasmara ◽  
Arisauna Maulidyan Pahlevi ◽  
Anas Sharafeldin Mohamed Osman

Abstract The availability of geoids, especially in survey and mapping activities, is useful for transforming the geometric heights obtained from observations of the Global Navigation Satellite System (GNSS) into orthometric heights that have real physical meanings such as those obtained from waterpass measurements. If a geoid is available, the orthometric heights of points on earth can be determined using the GNSS heighting method. The use of modern survey and mapping instruments based on satellite observations such as GNSS is more efficient in terms of time, effort, and cost compared to the accurate waterpass method. According to the Indonesian Geospatial Information Agency (BIG) it is stated that the application of geoid as a national Vertical Geospatial Reference System has an adequate and ideal category if the accuracy is higher than 15 cm. Recent studies have shown that it is possible to generate local geoid models with centimetre accuracy by utilizing airborne gravity data. We calculate free-air gravity anomaly data is calculated by processing airborne gravity and GNSS data using the Stokes Integral method on AGR software. Next a geoid model is created by calculating the contribution of three components, namely the long wave component represented by the EGM2008 global geoid data model, the shortwave component represented by the Shuttle Radar Topography Mission (SRTM) data and the medium wave component represented by the free-air gravity anomaly data. The geoid model validation was carried out using the geoid fitting method for geoid accuracy by calculating the difference between the gravimetric geoid and the geometric geoid and comparing it with the global geoid model EGM2008 degrees 2190. As a result, the total geoid model accuracy value was determined to be 49.4 cm on gravimetric geoid undulations with a standard deviation of 7.1 cm. Meanwhile, the results of the EGM2008 geoid undulation accuracy test at 2190 degrees resulted in an accuracy of 51.9 cm with a standard deviation of 9.9 cm. These results indicate that the local geoid model from airborne gravity measurement data produces a geoid model with a higher accuracy than the global geoid model EGM2008 degrees 2190. However, the accuracy of the resulting data is still below the BIG standard of 15 cm, so further research is needed to produce a geoid model which conforms to the standard.


2021 ◽  
Vol 936 (1) ◽  
pp. 012035
Author(s):  
Anas Sharafeldin Mohamed Osman ◽  
Ira Mutiara Anjasmara ◽  
Abdelrahim Ruby ◽  
Zahroh Arsy Udama

Abstract Nowadays, Global Geopotential Models (GGMs) can be used as a reference to develop more detailed regional/local geoids, or they can be used to provide geoid heights on their own. Since 2000, several GGMs have been released, and they are mainly derived from satellite gravity measurements, satellite-only models, terrestrial gravimetry, altimeter-derived gravity data in marine areas, and airborne gravity data. With a precise geoid model, ellipsoidal heights obtained from GPS can be converted to orthometric heights, which is reasonably quite needed in Geodesy, Civil Engineering, etc. These heights reflect changes in topography as well as local variations in gravity. This paper evaluates some of the latest releases of high degree reference models and the satellite-only global gravity field model over Sudan using 19 GPS/Leveling stations. We have been selected 6 GGMs based on Gravity field Goce and Grace, and they released in 2020, 2019, 2014, 2008, and 1996 as shown in the International Centre for Global Earth Models website (ICGEM). The accuracy evaluation of the GGM models have been discussed, the accurate GGMs over Sudan are XGM2019e_2159 and GOCO05s, which have indicated -0.019 and 0.046 meters, respectively. The evaluation results produce valuable information to academia and geoid modeling research topics in Sudan, which shows the precise model from the selected GGMs in Sudan by using the available GPS/Leveling data.


2021 ◽  
Vol 64 (4) ◽  
pp. GD434
Author(s):  
Mahin Hosseini-Asl ◽  
Alireza Amiri-Simkooei ◽  
Abdolreza Safari

High precision geoid determination is a challenging task at the national scale. Many efforts have been conducted to determine precise geoid, locally or globally. Geoid models have different precision depending on the type of information and the strategy employed when calculating the models. This contribution addresses the challenging problem of combining different regional and global geoid models, possibly combined with the geometric geoid derived from GNSS/leveling observations. The ultimate goal of this combination is to improve the precision of the combined model. We employ fitting an appropriate geometric surface to the geoid heights and estimating its (co)variance components. The proposed functional model uses the least squares 2D bi-cubic spline approximation (LS-BICSA) theory, which approximates the geoid model using a 2D spline surface fitted to an arbitrary set of data points in the region. The spline surface consists of third- order polynomial pieces that are smoothly connected together, imposing some continuity conditions at their boundaries. In addition, the least-squares variance component estimation (LS- VCE) is used to estimate precise weights and correlation among different models. We apply this strategy to the combined adjustment of the high-degree global gravitational model EIGEN-6C4, the regional geoid model IRG2016, and the Iranian geometric geoid derived from GNSS/leveling data. The accuracy of the constructed surface is investigated with five randomly selected subsamples of check points. The optimal combination of the two geoid models along with the GNSS/leveling data shows a reduction of 21 mm (~20%) in the RMSE values of discrepancies at the check points.


2021 ◽  
Vol 906 (1) ◽  
pp. 012036
Author(s):  
Persephone Galani ◽  
Sotiris Lycourghiotis ◽  
Foteini Kariotou

Abstract Deriving a local geoid model has drawn much research interest in the last decade, in an endeavour to minimize the errors in orthometric heights calculations, inherited by the use of global geoid reference models. In most parts of the earth, the local geoid surface may be tens of meters away from the Global Reference biaxial Ellipsoid (WGS84), which create numerus problems in topographic, environmental and navigational applications. Several methods have been developed for optimizing the precision of the calculation of the geoid heights undulations and the accuracy of the corresponding orthometric heights calculations. The optimization refers either to the method used for data acquisition, or to the geometrical method used for the determination of the best fit local geoid model. In the present work, we focus on the reference ellipsoid used for the geometric and geoid heights determination and develop a method to provide the one that fits best to the local geoid surface. Moreover, we consider relatively small sea regions and near to coast areas, where the usual methods for data acquisition fail more or less, and we pay attention in two directions: To obtain accurate measured data and to have the best possible reference ellipsoid for the area at hand. In this due, we use the “GNSS-on-boat” methodology to obtain direct sea level data, which we induce in a Moore Penrose pseudoinverse procedure to calculate the best fit triaxial ellipsoid. This locally optimized reference ellipsoid minimizes the geometric heights in the region at hand. The method is applied in two closed sea areas in Greece, namely Corinthian and Patra’s gulf and also in four regions in the Ionian Sea, which exhibit significant geoid alterations. Taking into account all factors of uncertainty, the precision of the mean sea level surface, produced by the “GNSS on boat” methodology, had been estimated at 5.43 cm for the gulf of Patras, at 3.76 cm for the Corinthian gulf and at 3.31 for the Ionian and Adriatic Sea areas. The average difference of this surface and the local triaxial reference ellipsoid, calculated in this work, is found to be less than 15 cm, whereas the corresponding difference with respect to WGS84 is of the order of 30m.


2021 ◽  
Vol 13 (21) ◽  
pp. 4217
Author(s):  
Marek Trojanowicz ◽  
Magdalena Owczarek-Wesołowska ◽  
Yan Ming Wang ◽  
Olgierd Jamroz

This article concerns the development of gravimetric quasigeoid and geoid models using the geophysical gravity data inversion technique (the GGI method). This research work was carried out on the basis of the data used in the Colorado geoid experiment, and the mean quasigeoid (ζm) and mean geoid (Nm) heights, determined by the approaches used in the Colorado geoid experiment, were used as a reference. Three versions of the quasigeoid GGI models depending on gravity data were analyzed: terrestrial-only, airborne-only, and combined (using airborne and terrestrial datasets). For the combined version, which was the most accurate, a model in the form of a 1′×1′ grid was calculated in the same area as the models determined in the Colorado geoid experiment. For the same grid, the geoid–quasigeoid separation was determined, which was used to build the geoid model. The agreement (in terms of the standard deviation of the differences) of the determined models, with ζm and Nm values for the GSVS17 profile points, was ±0.9 cm for the quasigeoid and ±1.2 cm for the geoid model. The analogous values, determined on the basis of all 1′×1′ grid points, were ±2.3 cm and ±2.6 cm for the quasigeoid and geoid models, respectively.


Author(s):  
G. Ferrara ◽  
C. Parente

Abstract. The knowledge of the geoid undulation, the height of the geoid relative to a given ellipsoid of reference, is fundamental to transform the ellipsoidal heights into orthometric heights. Global geoid undulation models developed from satellite gravity measurements appropriately integrated with other data, are free accessible in internet, but their accuracy may be inadequate for specific applications. Earth Gravitational Model 2008 (EGM2008) is one of those: usually available in grid form 2.5’ × 2.5’ (a geotif is developed by Agisoft with resolution 1’ × 1’), it defines the difference between the WGS84 ellipsoid height and the mean sea level, but in some areas the discrepancies between these geoid undulations and local correspondent measured values are on the order of various decimetres. For consequence, more accurate models are necessary. This article aims to determine a geoid undulation model suitable for Campania Region (Italy), starting from the global model EGM2008 (1’ × 1’) that is locally adjusted by using geodetic network points (GNPs) and GIS interpolation functions. Three different datasets are considered including respectively 20, 40 and 60 GNPs and three deterministic interpolators are applied in global way to generate geoid undulation grids: Inverse Distance Weight (IDW), Global Polynomial 1st order (GP1), Global Polynomial 2nd order (GP2). The resultant 9 models are tested on 20 additional GNPs. The experiments demonstrate that local geoid can be produced on a little area adapting global geoid by means of GNPs: the model obtained using GP2 and 60 GNPs, the most accurate one, fits the data with ±3.2 cm root mean square error (RMSE).


Sign in / Sign up

Export Citation Format

Share Document