scholarly journals Improving the performance of Bayesian phylogenetic inference under relaxed clock models

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rong Zhang ◽  
Alexei Drummond
2021 ◽  
Vol 17 (2) ◽  
pp. e1008322
Author(s):  
Jordan Douglas ◽  
Rong Zhang ◽  
Remco Bouckaert

Relaxed clock models enable estimation of molecular substitution rates across lineages and are widely used in phylogenetics for dating evolutionary divergence times. Under the (uncorrelated) relaxed clock model, tree branches are associated with molecular substitution rates which are independently and identically distributed. In this article we delved into the internal complexities of the relaxed clock model in order to develop efficient MCMC operators for Bayesian phylogenetic inference. We compared three substitution rate parameterisations, introduced an adaptive operator which learns the weights of other operators during MCMC, and we explored how relaxed clock model estimation can benefit from two cutting-edge proposal kernels: the AVMVN and Bactrian kernels. This work has produced an operator scheme that is up to 65 times more efficient at exploring continuous relaxed clock parameters compared with previous setups, depending on the dataset. Finally, we explored variants of the standard narrow exchange operator which are specifically designed for the relaxed clock model. In the most extreme case, this new operator traversed tree space 40% more efficiently than narrow exchange. The methodologies introduced are adaptive and highly effective on short as well as long alignments. The results are available via the open source optimised relaxed clock (ORC) package for BEAST 2 under a GNU licence (https://github.com/jordandouglas/ORC).


2020 ◽  
Author(s):  
Jordan Douglas ◽  
Rong Zhang ◽  
Remco Bouckaert

AbstractUncorrelated relaxed clock models enable estimation of molecular substitution rates across lineages and are widely used in phylogenetics for dating evolutionary divergence times. In this article we delved into the internal complexities of the relaxed clock model in order to develop efficient MCMC operators for Bayesian phylogenetic inference. We compared three substitution rate parameterisations, introduced an adaptive operator which learns the weights of other operators during MCMC, and we explored how relaxed clock model estimation can benefit from two cutting-edge proposal kernels: the AVMVN and Bactrian kernels. This work has produced an operator scheme that is up to 65 times more efficient at exploring continuous relaxed clock parameters compared with previous setups, depending on the dataset. Finally, we explored variants of the standard narrow exchange operator which are specifically designed for the relaxed clock model. In the most extreme case, this new operator traversed tree space 40% more efficiently than narrow exchange. The methodologies introduced are adaptive and highly effective on short as well as long alignments. The results are available via the open source optimised relaxed clock (ORC) package for BEAST 2 under a GNU licence (https://github.com/jordandouglas/ORC).Author summaryBiological sequences, such as DNA, accumulate mutations over generations. By comparing such sequences in a phylogenetic framework, the evolutionary tree of lifeforms can be inferred. With the overwhelming availability of biological sequence data, and the increasing affordability of collecting new data, the development of fast and efficient phylogenetic algorithms is more important than ever. In this article we focus on the relaxed clock model, which is very popular in phylogenetics. We explored how a range of optimisations can improve the statistical inference of the relaxed clock. This work has produced a phylogenetic setup which can infer parameters related to the relaxed clock up to 65 times faster than previous setups, depending on the dataset. The methods introduced adapt to the dataset during computation and are highly efficient when processing long biological sequences.


2002 ◽  
Vol 51 (5) ◽  
pp. 740-753 ◽  
Author(s):  
Richard E. Miller ◽  
Thomas R. Buckley ◽  
Paul S. Manos

Author(s):  
Lídia Kuan ◽  
Frederico Pratas ◽  
Leonel Sousa ◽  
Pedro Tomás

MrBayes is a popular software package for Bayesian phylogenetic inference, which uses an iterative approach to derive an evolutionary tree for a collection of species whose DNA sequences are known. Computationally, MrBayes is characterized by a large number of iterations, each composed of a set of tasks that isolated are not very time-consuming, but are globally computationally demanding. To accelerate the latest MrBayes 3.2, this paper presents MrBayes sMC3, which relies on the computational power of an heterogeneous CPU+GPU platform. For this, MrBayes sMC3 exploits both task and data-level parallelism while minimizing the overheads associated with kernel launches and CPU-GPU data transfers. Experimental results indicate that the proposed parallel approach, together with the proposed set of optimizations, allow for an application acceleration of up to 10× regarding the original MrBayes, and up to 3× regarding the Beagle Library. Furthermore, by analyzing the convergence rate of MrBayes sMC3 with that of the state-of-the-art approaches, a significant reduction in execution time is observed.


2020 ◽  
Author(s):  
Sebastian Höhna ◽  
Allison Y. Hsiang

AbstractThe ideal approach to Bayesian phylogenetic inference is to estimate all parameters of interest jointly in a single hierarchical model. However, this is often not feasible in practice due to the high computational cost that would be incurred. Instead, phylogenetic pipelines generally consist of chained analyses, whereby a single point estimate from a given analysis is used as input for the next analysis in the chain (e.g., a single multiple sequence alignment is used to estimate a gene tree). In this framework, uncertainty is not propagated from step to step in the chain, which can lead to inaccurate or spuriously certain results. Here, we formally develop and test the stepwise approach to Bayesian inference, which uses importance sampling to generate observations for the next step of an analysis pipeline from the posterior produced in the previous step. We show that this approach is identical to the joint approach given sufficient information in the data and in the importance sample. This is demonstrated using both a toy example and an analysis pipeline for inferring divergence times using a relaxed clock model. The stepwise approach presented here not only accounts for uncertainty between analysis steps, but also allows for greater flexibility in program choice (and hence model availability) and can be more computationally efficient than the traditional joint approach when multiple models are being tested.


2017 ◽  
Author(s):  
R. Biczok ◽  
P. Bozsoky ◽  
P. Eisenmann ◽  
J. Ernst ◽  
T. Ribizel ◽  
...  

AbstractMotivationThe presence of terraces in phylogenetic tree space, that is, a potentially large number of distinct tree topologies that have exactly the same analytical likelihood score, was first described by Sanderson et al, (2011). However, popular software tools for maximum likelihood and Bayesian phylogenetic inference do not yet routinely report, if inferred phylogenies reside on a terrace, or not. We believe, this is due to the unavailability of an efficient library implementation to (i) determine if a tree resides on a terrace, (ii) calculate how many trees reside on a terrace, and (iii) enumerate all trees on a terrace.ResultsIn our bioinformatics programming practical we developed two efficient and independent C++ implementations of the SUPERB algorithm by Constantinescu and Sankoff (1995) for counting and enumerating the trees on a terrace. Both implementations yield exactly the same results and are more than one order of magnitude faster and require one order of magnitude less memory than a previous 3rd party python implementation.AvailabilityThe source codes are available under GNU GPL at https://github.com/[email protected]


Sign in / Sign up

Export Citation Format

Share Document