tree topologies
Recently Published Documents


TOTAL DOCUMENTS

224
(FIVE YEARS 76)

H-INDEX

21
(FIVE YEARS 6)

2022 ◽  
Vol 9 ◽  
Author(s):  
Jonathan Filée ◽  
Marie Merle ◽  
Héloïse Bastide ◽  
Florence Mougel ◽  
Jean-Michel Bérenger ◽  
...  

We provide in this study a very large DNA dataset on Rhodnius species including 36 samples representing 16 valid species of the three Rhodnius groups, pictipes, prolixus and pallescens. Samples were sequenced at low-depth with whole-genome shotgun sequencing (Illumina technology). Using phylogenomics including 15 mitochondrial genes (13.3 kb), partial nuclear rDNA (5.2 kb) and 51 nuclear protein-coding genes (36.3 kb), we resolve sticking points in the Rhodnius phylogeny. At the species level, we confirmed the species-specific status of R. montenegrensis and R. marabaensis and we agree with the synonymy of R. taquarussuensis with R. neglectus. We also invite to revisit the species-specific status of R. milesi that is more likely R. nasutus. We proposed to define a robustus species complex that comprises the four close relative species: R. marabaensis, R. montenegrensis, R. prolixus and R. robustus. As Psammolestes tertius was included in the Rhodnius clade, we strongly recommend reclassifying this species as R. tertius. At the Rhodnius group level, molecular data consistently supports the clustering of the pictipes and pallescens groups, more related to each other than they are to the prolixus group. Moreover, comparing mitochondrial and nuclear tree topologies, our results demonstrated that various introgression events occurred in all the three Rhodnius groups, in laboratory strains but also in wild specimens. We demonstrated that introgressions occurred frequently in the prolixus group, involving the related species of the robustus complex but also the pairwise R. nasutus and R. neglectus. A genome wide analysis highlighted an introgression event in the pictipes group between R. stali and R. brethesi and suggested a complex gene flow between the three species of the pallescens group, R. colombiensis, R. pallescens and R. ecuadoriensis. The molecular data supports also a sylvatic distribution of R. prolixus in Brazil (Pará state) and the monophyly of R. robustus. As we detected extensive introgression events and selective pressure on mitochondrial genes, we strongly recommend performing separate mitochondrial and nuclear phylogenies and to take advantages of mito-nuclear conflicts in order to have a comprehensive evolutionary vision of this genus.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yan Zhong ◽  
Ping Wang ◽  
Xiaohui Zhang ◽  
Zong-Ming Cheng

Genes encoding VQ motif-containing (VQ) transcriptional regulators and WRKY transcription factors can participate separately or jointly in plant growth, development, and abiotic and biotic stress responses. In this study, 222 VQ and 645 WRKY genes were identified in six Prunus species. Based on phylogenetic tree topologies, the VQ and WRKY genes were classified into 13 and 32 clades, respectively. Therefore, at least 13 VQ gene copies and 32 WRKY gene copies were present in the genome of the common ancestor of the six Prunus species. Similar small Ks value peaks for the VQ and WRKY genes suggest that the two gene families underwent recent duplications in the six studied species. The majority of the Ka/Ks ratios were less than 1, implying that most of the VQ and WRKY genes had undergone purifying selection. Pi values were significantly higher in the VQ genes than in the WRKY genes, and the VQ genes therefore exhibited greater nucleotide diversity in the six species. Forty-one of the Prunus VQ genes were predicted to interact with 44 of the WRKY genes, and the expression levels of some predicted VQ-WRKY interacting pairs were significantly correlated. Differential expression patterns of the VQ and WRKY genes suggested that some might be involved in regulating aphid resistance in P. persica and fruit development in P. avium.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12577
Author(s):  
Gilles Didier ◽  
Michel Laurin

Given a phylogenetic tree that includes only extinct, or a mix of extinct and extant taxa, where at least some fossil data are available, we present a method to compute the distribution of the extinction time of a given set of taxa under the Fossilized-Birth-Death model. Our approach differs from the previous ones in that it takes into account (i) the possibility that the taxa or the clade considered may diversify before going extinct and (ii) the whole phylogenetic tree to estimate extinction times, whilst previous methods do not consider the diversification process and deal with each branch independently. Because of this, our method can estimate extinction times of lineages represented by a single fossil, provided that they belong to a clade that includes other fossil occurrences. We assess and compare our new approach with a standard previous one using simulated data. Results show that our method provides more accurate confidence intervals. This new approach is applied to the study of the extinction time of three Permo-Carboniferous synapsid taxa (Ophiacodontidae, Edaphosauridae, and Sphenacodontidae) that are thought to have disappeared toward the end of the Cisuralian (early Permian), or possibly shortly thereafter. The timing of extinctions of these three taxa and of their component lineages supports the idea that the biological crisis in the late Kungurian/early Roadian consisted of a progressive decline in biodiversity throughout the Kungurian.


2021 ◽  
Author(s):  
Arong Luo ◽  
Chi Zhang ◽  
Qing-Song Zhou ◽  
Simon Y.W. Ho ◽  
Chao-Dong Zhu

Evolutionary timescales can be estimated using a combination of genetic data and fossil evidence based on the molecular clock. Bayesian phylogenetic methods such as tip dating and total-evidence dating provide a powerful framework for inferring evolutionary timescales, but the most widely used priors for tree topologies and node times often assume that present-day taxa have been sampled randomly or exhaustively. In practice, taxon sampling is often carried out so as to include representatives of major lineages, such as orders or families. We examined the impacts of these diversified sampling schemes on Bayesian molecular dating under the unresolved fossilized birth-death (FBD) process, in which fossil taxa are topologically constrained but their exact placements are not inferred. We used synthetic data generated by simulation of nucleotide sequence evolution, fossil occurrences, and diversified taxon sampling. Our analyses show that increasing sampling density does not substantially improve divergence-time estimates under benign conditions. However, when the tree topologies were fixed to those used for simulation or when evolutionary rates varied among lineages, the performance of Bayesian tip dating improves with sampling density. By exploring three situations of model mismatches, we find that including all relevant fossils without pruning off those inappropriate for the FBD process can lead to underestimation of divergence times. Our reanalysis of a eutherian mammal data set confirms some of the findings from our simulation study, and reveals the complexity of diversified taxon sampling in phylogenomic data sets. In highlighting the interplay of taxon-sampling density and other factors, the results of our study have useful implications for Bayesian molecular dating in the era of phylogenomics.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2238
Author(s):  
Sanket Limaye ◽  
Sunitha M. Kasibhatla ◽  
Mukund Ramtirthkar ◽  
Meenal Kinikar ◽  
Mohan M. Kale ◽  
...  

The COVID-19 pandemic is a global challenge that impacted 200+ countries. India ranks in the second and third positions in terms of number of reported cases and deaths. Being a populous country with densely packed cities, SARS-CoV-2 spread exponentially. India sequenced ≈0.14% isolates from confirmed cases for pandemic surveillance and contributed ≈1.58% of complete genomes sequenced globally. This study was designed to map the circulating lineage diversity and to understand the evolution of SARS-CoV-2 in India using comparative genomics and population genetics approaches. Despite varied sequencing coverage across Indian States and Union Territories, isolates belonging to variants of concern (VoC) and variants of interest (VoI) circulated, persisted, and diversified during the first seventeen months of the pandemic. Delta and Kappa lineages emerged in India and spread globally. The phylogenetic tree shows lineage-wise monophyletic clusters of VoCs/VoIs and diversified tree topologies for non-VoC/VoI lineages designated as ‘Others’ in this study. Evolutionary dynamics analyses substantiate a lack of spatio-temporal clustering, which is indicative of multiple global and local introductions. Sites under positive selection and significant variations in spike protein corroborate with the constellation of mutations to be monitored for VoC/VoI as well as substitutions that are characteristic of functions with implications in virus–host interactions, differential glycosylation, immune evasion, and escape from neutralization.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12418
Author(s):  
Aaron Liston ◽  
Kevin A. Weitemier ◽  
Lucas Letelier ◽  
János Podani ◽  
Yu Zong ◽  
...  

Background Hawthorn species (Crataegus L.; Rosaceae tribe Maleae) form a well-defined clade comprising five subgeneric groups readily distinguished using either molecular or morphological data. While multiple subsidiary groups (taxonomic sections, series) are recognized within some subgenera, the number of and relationships among species in these groups are subject to disagreement. Gametophytic apomixis and polyploidy are prevalent in the genus, and disagreement concerns whether and how apomictic genotypes should be recognized taxonomically. Recent studies suggest that many polyploids arise from hybridization between members of different infrageneric groups. Methods We used target capture and high throughput sequencing to obtain nucleotide sequences for 257 nuclear loci and nearly complete chloroplast genomes from a sample of hawthorns representing all five currently recognized subgenera. Our sample is structured to include two examples of intersubgeneric hybrids and their putative diploid and tetraploid parents. We queried the alignment of nuclear loci directly for evidence of hybridization, and compared individual gene trees with each other, and with both the maximum likelihood plastome tree and the nuclear concatenated and multilocus coalescent-based trees. Tree comparisons provided a promising, if challenging (because of the number of comparisons involved) method for visualizing variation in tree topology. We found it useful to deploy comparisons based not only on tree-tree distances but also on a metric of tree-tree concordance that uses extrinsic information about the relatedness of the terminals in comparing tree topologies. Results We obtained well-supported phylogenies from plastome sequences and from a minimum of 244 low copy-number nuclear loci. These are consistent with a previous morphology-based subgeneric classification of the genus. Despite the high heterogeneity of individual gene trees, we corroborate earlier evidence for the importance of hybridization in the evolution of Crataegus. Hybridization between subgenus Americanae and subgenus Sanguineae was documented for the origin of Sanguineae tetraploids, but not for a tetraploid Americanae species. This is also the first application of target capture probes designed with apple genome sequence. We successfully assembled 95% of 257 loci in Crataegus, indicating their potential utility across the genera of the apple tribe.


2021 ◽  
Vol 22 (21) ◽  
pp. 11393
Author(s):  
Marcin Górniak ◽  
Dariusz L. Szlachetko ◽  
Natalia Olędrzyńska ◽  
Aleksandra M. Naczk ◽  
Agata Mieszkowska ◽  
...  

The phylogeny of the genus Paphiopedilum based on the plastome is consistent with morphological analysis. However, to date, none of the analyzed nuclear markers has confirmed this. Topology incongruence among the trees of different nuclear markers concerns entire sections of the subgenus Paphiopedilum. The low-copy nuclear protein-coding gene PHYC was obtained for 22 species representing all sections and subgenera of Paphiopedilum. The nuclear-based phylogeny is supported by morphological characteristics and plastid data analysis. We assumed that an incongruence in nuclear gene trees is caused by ancestral homoploid hybridization. We present a model for inferring the phylogeny of the species despite the incongruence of the different tree topologies. Our analysis, based on six low-copy nuclear genes, is congruent with plastome phylogeny and has been confirmed by phylogenetic network analysis.


Sign in / Sign up

Export Citation Format

Share Document