scholarly journals In vivo haploid induction leads to increased frequency of twin-embryo and abnormal fertilization in maize

2018 ◽  
Vol 18 (1) ◽  
Author(s):  
Liwei Liu ◽  
Wei Li ◽  
Chenxu Liu ◽  
Baojian Chen ◽  
Xiaolong Tian ◽  
...  
2020 ◽  
Vol 80 (03) ◽  
Author(s):  
R. K Khulbe ◽  
A. Pattanayak ◽  
Lakshmi Kant ◽  
G. S. Bisht ◽  
M. C. Pant ◽  
...  

The use of in vivo haploid induction system makes the doubled haploid (DH) technology easier to adopt for the conventional maize breeders. However, despite having played an important role in the initial developmental phases of DH technology, Indian maize research has yet to harvest its benefits. Haploid Inducer Lines (HILs) developed by CIMMYT are being widely used in maize breeding programmes in many countries including India. There, however, is no published information on the efficiency of DH line production using CIMMYT HILs in Indian maize breeding programmes. In the present study, the efficiency of DH production using CIMMYT’s tropically adapted inducer line TAILP1 was investigated with eight source populations including two of sweet corn. The average haploid induction rate (HIR) of TAILP1 was 5.48% with a range of 2.01 to 10.03%. Efficiency of DH production ranged from 0.14 to 1.87% for different source populations with an average of 1.07%. The information generated will be useful for maize breeders intending to use DH technology for accelerated development of completely homozygous lines.


Crop Science ◽  
2016 ◽  
Vol 56 (3) ◽  
pp. 1127-1135 ◽  
Author(s):  
Albrecht E. Melchinger ◽  
Pedro Correa Brauner ◽  
Juliane Böhm ◽  
Wolfgang Schipprack
Keyword(s):  

2019 ◽  
Author(s):  
Chenxu Liu ◽  
Yu Zhong ◽  
Xiaolong Qi ◽  
Ming Chen ◽  
Zongkai Liu ◽  
...  

AbstractDoubled haploid breeding technology has been one of the most important techniques for accelerating crop breeding. In compare toin vivohaploid induction in maize, which is efficient and background independent, wheat haploid production by interspecific hybridization pollinated with maize is influenced by genetic background and requires rescue of young embryos. Here, we analyzed the homologues of maize haploid induction geneMTL/ZmPLA1/NLDin several crop species systematically, the homologues are highly conserved in sorghum, millet and wheat etc. Since wheat is a very important polyploidy crop, as a proof of concept, we demonstrated that thein vivohaploid induction method could be extended from diploid maize to hexaploid wheat by knocking out the wheat homologues (TaPLAs). Result showed that double knock-out mutation could trigger wheat haploid induction at ~ 2%-3%, accompanied by 30% - 60% seed setting rate. The performance of haploid wheat individual showed shorter plant, narrower leaves and male sterile. Our results also revealed that knockout ofTaPLA-A andTaPLA-D do not affect pollen viability. This study not only confirmed the function of the induction gene and explored a new approach for haploid production in wheat, but also provided an example that thein vivohaploid induction could be applied in more crop species with different ploidy levels. Furthermore, by combining with gene editing, it would be a fast and powerful platform for traits improvement in polyploidy crops breeding.


2019 ◽  
Vol 132 (12) ◽  
pp. 3227-3243 ◽  
Author(s):  
Vijay Chaikam ◽  
Willem Molenaar ◽  
Albrecht E. Melchinger ◽  
Prasanna M. Boddupalli

Key Message Increased efficiencies achieved in different steps of DH line production offer greater benefits to maize breeding programs. Abstract Doubled haploid (DH) technology has become an integral part of many commercial maize breeding programs as DH lines offer several economic, logistic and genetic benefits over conventional inbred lines. Further, new advances in DH technology continue to improve the efficiency of DH line development and fuel its increased adoption in breeding programs worldwide. The established method for maize DH production covered in this review involves in vivo induction of maternal haploids by a male haploid inducer genotype, identification of haploids from diploids at the seed or seedling stage, chromosome doubling of haploid (D0) seedlings and finally, selfing of fertile D0 plants. Development of haploid inducers with high haploid induction rates and adaptation to different target environments have facilitated increased adoption of DH technology in the tropics. New marker systems for haploid identification, such as the red root marker and high oil marker, are being increasingly integrated into new haploid inducers and have the potential to make DH technology accessible in germplasm such as some Flint, landrace, or tropical material, where the standard R1-nj marker is inhibited. Automation holds great promise to further reduce the cost and time in haploid identification. Increasing success rates in chromosome doubling protocols and/or reducing environmental and human toxicity of chromosome doubling protocols, including research on genetic improvement in spontaneous chromosome doubling, have the potential to greatly reduce the production costs per DH line.


Nature Plants ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 466-472 ◽  
Author(s):  
Yu Zhong ◽  
Baojian Chen ◽  
Mengran Li ◽  
Dong Wang ◽  
Yanyan Jiao ◽  
...  

Crop Science ◽  
2014 ◽  
Vol 54 (4) ◽  
pp. 1497-1504 ◽  
Author(s):  
Albrecht E. Melchinger ◽  
Wolfgang Schipprack ◽  
H. Friedrich Utz ◽  
Vilson Mirdita

Crop Science ◽  
2011 ◽  
Vol 51 (4) ◽  
pp. 1498-1506 ◽  
Author(s):  
Vanessa Prigge ◽  
Ciro Sánchez ◽  
Baldev S. Dhillon ◽  
Wolfgang Schipprack ◽  
José Luis Araus ◽  
...  

2021 ◽  
Author(s):  
Yu Zhong ◽  
Baojian Chen ◽  
Dong Wang ◽  
Xijian Zhu ◽  
Yuwen Wang ◽  
...  

Doubled haploid (DH) technology is used to obtain homozygous lines in a single generation, which significantly accelerates the crop breeding trajectory. Traditionally, in vitro culture is used to generate DHs, but is limited by species and genotype recalcitrance. In vivo haploid induction (HI) through seed is been widely and efficiently used in maize and was recently extended to several monocot crops. However, a similar generic and efficient HI system is still lacking in dicot crops. Here we show that genotype-independent in vivo HI can be triggered by mutation of DMP genes in tomato, rapeseed and tobacco with HI rates of ~1.9%, 2.4% and 1.2%, respectively. The DMP-HI system offers a robust DH technology to facilitate variety improvement in these crops. The success of this approach and the conservation of DMP genes paves the way for a generic and efficient genotype-independent HI system in other dicot crops.


2019 ◽  
Vol 18 (2) ◽  
pp. 316-318 ◽  
Author(s):  
Chenxu Liu ◽  
Yu Zhong ◽  
Xiaolong Qi ◽  
Ming Chen ◽  
Zongkai Liu ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 739
Author(s):  
Chen Chen ◽  
Zijian Xiao ◽  
Junwen Zhang ◽  
Wei Li ◽  
Jinlong Li ◽  
...  

Doubled haploid technology is widely applied in maize. The haploid inducer lines play critical roles in doubled haploid breeding. We report the development of specialized haploid inducer lines that enhance the purple pigmentation of crossing immature embryos. During the development of haploid inducer lines, two breeding populations derived from the CAU3/S23 and CAU5/S23 were used. Molecular marker-assisted selection for both qhir1 and qhir8 was used from BC1F1 to BC1F4. Evaluation of the candidate individuals in each generation was carried out by pollinating to the tester of ZD958. Individuals with fast and clear pigmentation of the crossing immature embryos, high number of haploids per ear, and high haploid induction rate were considered as candidates. Finally, three new haploid inducer lines (CS1, CS2, and CS3) were developed. The first two (CS1 and CS2) were from the CAU3/S23, with a haploid induction rate of 8.29%–13.25% and 11.54%–15.54%, respectively. Meanwhile, the CS3 was from the CAU5/S23. Its haploid induction rate was 8.14%–12.28%. In comparison with the donor haploid inducer lines, the 24-h purple embryo rates of the newly developed haploid inducer lines were improved by 10%–20%, with a ~90% accuracy for the identification of haploid immature embryos. These new haploid inducer lines will further improve the efficiency of doubled haploid breeding of maize.


Sign in / Sign up

Export Citation Format

Share Document