scholarly journals Comparison of targeted next-generation sequencing and Sanger sequencing for the detection of PIK3CA mutations in breast cancer

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Ruza Arsenic ◽  
Denise Treue ◽  
Annika Lehmann ◽  
Michael Hummel ◽  
Manfred Dietel ◽  
...  
2019 ◽  
pp. 1-26
Author(s):  
Frankie Ann Holmes ◽  
Maren K. Levin ◽  
Ying Cao ◽  
Sohail Balasubramanian ◽  
Jeffrey S. Ross ◽  
...  

PURPOSE To identify proteomic and genomic alterations in residual disease (RD) for human epidermal growth factor receptor 2 (HER2)-positive (HER2+) breast cancer (BC) after preoperative trastuzumab (H), lapatinib (L), or both (H+L) in combination with chemotherapy. PATIENTS AND METHODS Patients with stage II/III HER2+ BC (n = 100) were randomly assigned to preoperative treatment with H versus L 1,250mg versus H+L (L: 750 to 1,000 mg) plus 5-fluorouracil, epirubicin, and cyclophosphamide, followed by weekly paclitaxel. After receiving institutional review board–approved informed consent, targeted next-generation sequencing was performed on 20 patients’ formalin-fixed paraffin embedded tumors to characterize genomic alterations across 287 cancer-related genes. Reverse phase protein array (RPPA) analysis was performed on both the baseline biopsy and RD specimens, when available. RESULTS Two of 20 RD tissues were HER2 negative per next-generation sequencing; one sample had insufficient tissue. Of six pretreatment biopsy specimens, four were comutated with TP53 and PIK3CA. Of 17 HER2+ RD, seven specimens (41%) had PIK3CA mutations always comutated with TP53, and four (24%) also had concurrent CDK12 amplification. Overall, CDK12 amplification was observed in eight of the 17 (47%) HER2+ RD specimens. A total of 12 RD specimens (71%) had TP53 mutations. Although prevalence of individual TP53 and PIK3CA mutations was only modestly higher than published estimates for those in HER2+ primary BCs (55% and 32% for TP53 and PIK3CA, respectively), prevalence of these as comutations appeared higher (41%), compared with less than 10% in several series. On RPPA analysis of the RD tissue with comutations, the strongest Spearman ρ correlations were limited to EGFR and phospho-AKT (ρ, 0.999; P = .019) and phospho-mTOR and phospho-S6 ribosomal protein (ρ, 0.994; P = .048). CONCLUSION HER2-amplified RD tissue after preoperative H, L, or H+L plus chemotherapy was enriched for PIK3CA and TP53 comutations, and the RD tissue demonstrated activation of EGFR/AKT/mTOR signaling on RPPA.


2017 ◽  
Vol 27 (6) ◽  
pp. 791-796 ◽  
Author(s):  
Jianping Xiao ◽  
Xueqin Guo ◽  
Yong Wang ◽  
Mingkun Shao ◽  
Xiaoming Wei ◽  
...  

Purpose To identify disease-causing mutations in a Chinese patient with retinitis pigmentosa (RP). Methods A detailed clinical examination was performed on the proband. Targeted next-generation sequencing (NGS) combined with bioinformatics analysis was performed on the proband to detect candidate disease-causing mutations. Sanger sequencing was performed on all subjects to confirm the candidate mutations and assess cosegregation within the family. Results Clinical examinations of the proband showed typical characteristics of RP. Three candidate heterozygous mutations in 3 genes associated with RP were detected in the proband by targeted NGS. The 3 mutations were confirmed by Sanger sequencing and the deletion (c.357_358delAA) in PRPF31 was shown to cosegregate with RP phenotype in 7 affected family members, but not in 3 unaffected family members. Conclusions The deletion (c.357_358delAA) in PRPF31 was the disease-causing mutation for the proband and his affected family members with RP. To our knowledge, this is the second report of the deletion and the first report of the other 2 mutations in the Chinese population. Targeted NGS combined with bioinformatics analysis proved to be an effective molecular diagnostic tool for RP.


BMJ Open ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. e021632 ◽  
Author(s):  
Juliette Bacquet ◽  
Tanya Stojkovic ◽  
Amandine Boyer ◽  
Nathalie Martini ◽  
Frédérique Audic ◽  
...  

PurposeInherited peripheral neuropathies (IPN) represent a large heterogenous group of hereditary diseases with more than 100 causative genes reported to date. In this context, targeted next-generation sequencing (NGS) offers the opportunity to screen all these genes with high efficiency in order to unravel the genetic basis of the disease. Here, we compare the diagnostic yield of targeted NGS with our previous gene by gene Sanger sequencing strategy. We also describe several novel likely pathogenic variants.Design and participantsWe have completed the targeted NGS of 81 IPN genes in a cohort of 123 unrelated patients affected with diverse forms of IPNs, mostly Charcot-Marie-Tooth disease (CMT): 23% CMT1, 52% CMT2, 9% distal hereditary motor neuropathy, 7% hereditary sensory and autonomic neuropathy and 6.5% intermediate CMT.ResultsWe have solved the molecular diagnosis in 49 of 123 patients (~40%). Among the identified variants, 26 variants were already reported in the literature. In our cohort, the most frequently mutated genes are respectively:MFN2,SH3TC2,GDAP1,NEFL,GAN,KIF5AandAARS. Panel-based NGS was more efficient in familial cases than in sporadic cases (diagnostic yield 49%vs19%, respectively). NGS-based search for copy number variations, allowed the identification of three duplications in three patients and raised the diagnostic yield to 41%. This yield is two times higher than the one obtained previously by gene Sanger sequencing screening. The impact of panel-based NGS screening is particularly important for demyelinating CMT (CMT1) subtypes, for which the success rate reached 87% (36% only for axonal CMT2).ConclusionNGS allowed to identify causal mutations in a shorter and cost-effective time. Actually, targeted NGS is a well-suited strategy for efficient molecular diagnosis of IPNs. However, NGS leads to the identification of numerous variants of unknown significance, which interpretation requires interdisciplinary collaborations between molecular geneticists, clinicians and (neuro)pathologists.


2013 ◽  
Vol 34 (7) ◽  
pp. 1035-1042 ◽  
Author(s):  
Birgit Sikkema-Raddatz ◽  
Lennart F. Johansson ◽  
Eddy N. de Boer ◽  
Rowida Almomani ◽  
Ludolf G. Boven ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document