scholarly journals Spleen tyrosine kinase facilitates neutrophil activation and worsens long-term neurologic deficits after spinal cord injury

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Dylan A. McCreedy ◽  
Clare L. Abram ◽  
Yongmei Hu ◽  
Sun Won Min ◽  
Madison E. Platt ◽  
...  

Abstract Background Spinal cord injury elicits widespread inflammation that can exacerbate long-term neurologic deficits. Neutrophils are the most abundant immune cell type to invade the spinal cord in the early acute phase after injury, however, their role in secondary pathogenesis and functional recovery remains unclear. We have previously shown that neutrophil functional responses during inflammation are augmented by spleen tyrosine kinase, Syk, a prominent intracellular signaling enzyme. In this study, we evaluated the contribution of Syk towards neutrophil function and long-term neurologic deficits after spinal cord injury. Methods Contusive spinal cord injury was performed at thoracic vertebra level 9 in mice with conditional deletion of Syk in neutrophils (Sykf/fMRP8-Cre). Hindlimb locomotor recovery was evaluated using an open-field test for 35 days following spinal cord injury. Long-term white matter sparing was assessed using eriochrome cyanide staining. Blood-spinal cord barrier disruption was evaluated by immunoblotting. Neutrophil infiltration, activation, effector functions, and cell death were determined by flow cytometry. Cytokine and chemokine expression in neutrophils was assessed using a gene array. Results Syk deficiency in neutrophils improved long-term functional recovery after spinal cord injury, but did not promote long-term white matter sparing. Neutrophil activation, cytokine expression, and cell death in the acutely injured spinal cord were attenuated by the genetic loss of Syk while neutrophil infiltration and effector functions were not affected. Acute blood-spinal cord barrier disruption was also unaffected by Syk deficiency in neutrophils. Conclusions Syk facilitates specific neutrophil functional responses to spinal cord injury including activation, cytokine expression, and cell death. Long-term neurologic deficits are exacerbated by Syk signaling in neutrophils independent of acute blood-spinal cord barrier disruption and long-term white matter sparing. These findings implicate Syk in pathogenic neutrophil activities that worsen long-term functional recovery after spinal cord injury.

2016 ◽  
Vol 54 (5) ◽  
pp. 3578-3590 ◽  
Author(s):  
Hemant Kumar ◽  
Alexander E. Ropper ◽  
Soo-Hong Lee ◽  
Inbo Han

2015 ◽  
Vol 18 (5) ◽  
pp. 293-295 ◽  
Author(s):  
Hou-Qing Long ◽  
Guang-Sheng Li ◽  
Xing Cheng ◽  
Jing-Hui Xu ◽  
Fo-Bao Li

2020 ◽  
Author(s):  
Xinwang Ying ◽  
Qingfeng Xie ◽  
Shengcun Li ◽  
Xiaolan Yu ◽  
Kecheng Zhou ◽  
...  

Abstract Background: The permeability of blood-spinal cord barrier (BSCB) is mainly determined by the junction complex between adjacent endothelial cells, including tight junctions (TJ) and adhesion junctions (AJ), which can be severely damaged after spinal cord injury (SCI). Exercise training is a recognized method for the treatment of SCI. The destruction of the BSCB mediated by matrix metalloproteinase (MMP) leads to inflammation, neurotoxin production, and apoptosis of neurons. The failure of effective regeneration of new blood vessels is also an important reason for delayed recovery after SCI. We introduced water treadmill training (TT) for the first time, which can help SCI rats successfully exercise and measured the effect of TT in promoting recovery after SCI and possible mechanisms involved.Methods: Sprague-Dawley (200–250g) rats were randomly divided into three groups: Sham operated, SCI, and SCI + TT. Animals were sacrificed 7 d or 14 d post-surgery. The degree of neurological deficit as assessed by the Basso-Beattie-Bresnahan motor rating scale, tissue water content, BSCB permeability, apoptosis, protein expression and ultrastructure of vascular endothelial cells were assessed, Western blot, immunofluorescence and transmission electron microscopy. Results: Our experiments showed that TT reduced the permeability of BSCB and decreased tissue structural damage. TT improved functional recovery significantly when compared with the SCI group; TJ and AJ proteins expression increased significantly after TT training and training reduced apoptosis induced by SCI. TT can promote angiogenesis and the expression of MMP-2 and MMP-9 was significantly inhibited by TT.Conclusions: In this study, the results indicate that TT promotes functional recovery for the following reasons: (1) TT protects residual BSCB structure from further damage; (2) it promotes vascular regeneration; and (3) it inhibits the expression of MMP-2/9 to mitigate BSCB damage.


Sign in / Sign up

Export Citation Format

Share Document