scholarly journals gsufsort: constructing suffix arrays, LCP arrays and BWTs for string collections

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Felipe A. Louza ◽  
Guilherme P. Telles ◽  
Simon Gog ◽  
Nicola Prezza ◽  
Giovanna Rosone

Abstract Background The construction of a suffix array for a collection of strings is a fundamental task in Bioinformatics and in many other applications that process strings. Related data structures, as the Longest Common Prefix array, the Burrows–Wheeler transform, and the document array, are often needed to accompany the suffix array to efficiently solve a wide variety of problems. While several algorithms have been proposed to construct the suffix array for a single string, less emphasis has been put on algorithms to construct suffix arrays for string collections. Result In this paper we introduce , an open source software for constructing the suffix array and related data indexing structures for a string collection with N symbols in O(N) time. Our tool is written in and is based on the algorithm gSACA-K (Louza et al. in Theor Comput Sci 678:22–39, 2017), the fastest algorithm to construct suffix arrays for string collections. The tool supports large fasta, fastq and text files with multiple strings as input. Experiments have shown very good performance on different types of strings. Conclusions is a fast, portable, and lightweight tool for constructing the suffix array and additional data structures for string collections.

2015 ◽  
Author(s):  
◽  
Richard Beal ◽  

The parameterized string (p-string), a generalization of the traditional string, is composed of constant and parameter symbols. A parameterized match (p-match) exists between two p-strings if the constants match exactly and there exists a bijection between the parameter symbols. Historically, p-strings have been employed in source code cloning, plagiarism detection, and structural similarity between biological sequences. By handling the intricacies of the parameterized suffix, we can efficiently address complex applications with data structures also reusable in traditional matching scenarios. In this dissertation, we extend data structures for p-strings (and variants) to address sophisticated string computations.;We introduce a taxonomy of classes for longest factor problems. Using this taxonomy, we show an interesting connection between the parameterized longest previous factor (pLPF) and familiar data structures in string theory, including the border array, prefix array, longest common prefix array, and analogous p-string data structures. Exploiting this connection, we construct a multitude of data structures using the same general pLPF framework.;Before this dissertation, the p-match was defined predominately by the matching between uncompressed p-strings. Here, we introduce the compressed parameterized pattern match to find all p-matches between a pattern and a text, using only the pattern and a compressed form of the text. We present parameterized compression (p-compression) as a new way to losslessly compress data to support p-matching. Experimentally, it is shown that p-compression is competitive with standard compression schemes. Using p-compression, we address the compressed p-match independent of the underlying compression routine.;Currently, p-string theory lacks the capability to support indeterminate symbols, a staple essential for applications involving inexact matching such as in music analysis. In this work, we propose and efficiently address two new types of p-matching with indeterminate symbols. (1) We introduce the indeterminate parameterized match (ip-match) to permit matching with indeterminate holes in a p-string. We support the ip-match by introducing data structures that extend the prefix array. (2) From a different perspective, the equivalence parameterized match (e-match) evolves the p-match to consider intra-alphabet symbol classes as equivalence classes. We propose a method to perform the e-match using the p-string suffix array framework, i.e. the parameterized suffix array (pSA) and parameterized longest common prefix array (pLCP). Historically, direct constructions of the pSA and pLCP have suffered from quadratic time bounds in the worst-case. Here, we introduce new p-string theory to efficiently construct the pSA/pLCP and break the theoretical worst-case time barrier.;Biological applications have become a classical use of p-string theory. Here, we introduce the structural border array to provide a lightweight solution to the biologically-oriented variant of the p-match, i.e. the structural match (s-match) on structural strings (s-strings). Following the s-match, we show how to use s-string suffix structures to support various pattern matching problems involving RNA secondary structures. Finally, we propose/construct the forward stem matrix (FSM), a data structure to access RNA stem structures, and we apply the FSM to the detection of hairpins and pseudoknots in an RNA sequence.;This dissertation advances the state-of-the-art in p-string theory by developing data structures for p-strings/s-strings and using p-string/s-string theory in new and old contexts to address various applications. Due to the flexibility of the p-string/s-string, the data structures and algorithms in this work are also applicable to the myriad of problems in the string community that involve traditional strings.


2018 ◽  
Author(s):  
Felipe A. Louza ◽  
Guilherme P. Telles ◽  
Simon Gog

Strings are prevalent in Computer Science and algorithms for their efficient processing are fundamental in various applications. The results introduced in this work contribute with theoretical improvements and practical advances in building full-text indexes. Our first contribution is an in-place algorithm that computes the Burrows-Wheeler transform and the longest common prefix (LCP) array. Our second contribution is the construction of the suffix array augmented with the LCP array in optimal time and space for strings from constant size alphabets. Our third contribution is a set of algorithms to construct full-text indexes for string collections in optimal theoretical bounds. This work is an extended abstract of the Ph.D. thesis of the first author.


2013 ◽  
Vol 18 ◽  
pp. 22-31 ◽  
Author(s):  
Timo Beller ◽  
Simon Gog ◽  
Enno Ohlebusch ◽  
Thomas Schnattinger

2019 ◽  
Vol 26 (9) ◽  
pp. 948-961 ◽  
Author(s):  
Paola Bonizzoni ◽  
Gianluca Della Vedova ◽  
Yuri Pirola ◽  
Marco Previtali ◽  
Raffaella Rizzi

2019 ◽  
Vol 12 (2) ◽  
pp. 128-134
Author(s):  
Sanjeev Kumar ◽  
Suneeta Agarwal ◽  
Ranvijay

Background: DNA and Protein sequences of an organism contain a variety of repeated structures of various types. These repeated structures play an important role in Molecular biology as they are related to genetic backgrounds of inherited diseases. They also serve as a marker for DNA mapping and DNA fingerprinting. Efficient searching of maximal and super maximal repeats in DNA/Protein sequences can lead to many other applications in the area of genomics. Moreover, these repeats can also be used for identification of critical diseases by finding the similarity between frequency distributions of repeats in viruses and genomes (without using alignment algorithms). Objective: The study aims to develop an efficient tool for searching maximal and super maximal repeats in large DNA/Protein sequences. Methods: The proposed tool uses a newly introduced data structure Induced Enhanced Suffix Array (IESA). IESA is an extension of enhanced suffix array. It uses induced suffix array instead of classical suffix array. IESA consists of Induced Suffix Array (ISA) and an additional array-Longest Common Prefix (LCP) array. ISA is an array of all sorted suffixes of the input sequence while LCP array stores the lengths of the longest common prefixes between all pairs of consecutive suffixes in an induced suffix array. IESA is known to be efficient w.r.t. both time and space. It facilitates the use of secondary memory for constructing the large suffix-array. Results: An open source standalone tool named MSR-IESA for searching maximal and super maximal repeats in DNA/Protein sequences is provided at https://github.com/sanjeevalg/MSRIESA. Experimental results show that the proposed algorithm outperforms other state of the art works w.r.t. to both time and space. Conclusion: The proposed tool MSR-IESA is remarkably efficient for the analysis of DNA/Protein sequences, having maximal and super maximal repeats of any length. It can be used for identification of well-known diseases.


Author(s):  
Pijush Kanti Dutta Pramanik ◽  
Saurabh Pal ◽  
Moutan Mukhopadhyay

Like other fields, the healthcare sector has also been greatly impacted by big data. A huge volume of healthcare data and other related data are being continually generated from diverse sources. Tapping and analysing these data, suitably, would open up new avenues and opportunities for healthcare services. In view of that, this paper aims to present a systematic overview of big data and big data analytics, applicable to modern-day healthcare. Acknowledging the massive upsurge in healthcare data generation, various ‘V's, specific to healthcare big data, are identified. Different types of data analytics, applicable to healthcare, are discussed. Along with presenting the technological backbone of healthcare big data and analytics, the advantages and challenges of healthcare big data are meticulously explained. A brief report on the present and future market of healthcare big data and analytics is also presented. Besides, several applications and use cases are discussed with sufficient details.


Author(s):  
Juha Kärkkäinen ◽  
Giovanni Manzini ◽  
Simon J. Puglisi

2021 ◽  
pp. 143-150
Author(s):  
Tomohiro I ◽  
Robert W. Irving ◽  
Dominik Köppl ◽  
Lorna Love

Sign in / Sign up

Export Citation Format

Share Document