scholarly journals Intraoperative 3D imaging leads to substantial revision rate in management of tibial plateau fractures in 559 cases

Author(s):  
Nils Beisemann ◽  
Holger Keil ◽  
Benedict Swartman ◽  
Marc Schnetzke ◽  
Jochen Franke ◽  
...  
Author(s):  
Nick Assink ◽  
Inge H. F. Reininga ◽  
Kaj ten Duis ◽  
Job N. Doornberg ◽  
Harm Hoekstra ◽  
...  

Abstract Purpose The aim of this systematic review was to provide an overview of current applications of 3D technologies in surgical management of tibial plateau fractures and to assess whether 3D-assisted surgery results in improved clinical outcome as compared to surgery based on conventional imaging modalities. Methods A literature search was performed in Pubmed and Embase for articles reporting on the use of 3D techniques in operative management of tibial plateau fractures. This systematic review was performed in concordance with the PRISMA-guidelines. Methodological quality and risk of bias was assessed according to the guidelines of the McMaster Critical Appraisal. Differences in terms of operation time, blood loss, fluoroscopy frequency, intra-operative revision rates and patient-reported outcomes between 3D-assisted and conventional surgery were assessed. Data were pooled using the inverse variance weighting method in RevMan. Results Twenty articles evaluating 948 patients treated with 3D-assisted surgery and 126 patients with conventional surgery were included. Five different concepts of 3D-assisted surgery were identified: ‘3D virtual visualization’, ‘3D printed hand-held fracture models’, ‘Pre-contouring of osteosynthesis plates’, ‘3D printed surgical guides’, and ‘Intra-operative 3D imaging’. 3D-assisted surgery resulted in reduced operation time (104.7 vs. 126.4 min; P < 0.01), less blood loss (241 ml vs. 306 ml; P < 0.01), decreased frequency of fluoroscopy (5.8 vs. 9.1 times; P < 0.01). No differences in functional outcome was found (Hospital for Special Surgery Knee-Rating Scale: 88.6 vs. 82.8; P = 0.23). Conclusions Five concepts of 3D-assisted surgical management of tibial plateau fractures emerged over the last decade. These include 3D virtual fracture visualization, 3D-printed hand-held fracture models for surgical planning, 3D-printed models for pre-contouring of osteosynthesis plates, 3D-printed surgical guides, and intra-operative 3D imaging. 3D-assisted surgery may have a positive effect on operation time, blood loss, and fluoroscopy frequency.


1997 ◽  
Vol 36 (5) ◽  
pp. 867
Author(s):  
Geon Lee ◽  
Chan Heo ◽  
Yong Jo Kim ◽  
Hyeok Po Kwon ◽  
Jung Hyeok Kwon ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Daniel Pincus ◽  
Jessica Widdifield ◽  
Karen S. Palmer ◽  
J. Michael Paterson ◽  
Alvin Li ◽  
...  

Abstract Background Health care funding reforms are being used worldwide to improve system performance but may invoke unintended consequences. We assessed the effects of introducing a targeted hospital funding model, based on fixed price and volume, for hip fractures. We hypothesized the policy change was associated with reduction in wait times for hip fracture surgery, increase in wait times for non-hip fracture surgery, and increase in the incidence of after-hours hip fracture surgery. Methods This was a population-based, interrupted time series analysis of 49,097 surgeries for hip fractures, 10,474 for ankle fractures, 1,594 for tibial plateau fractures, and 40,898 for appendectomy at all hospitals in Ontario, Canada between April 2012 and March 2017. We used segmented regression analysis of interrupted monthly time series data to evaluate the impact of funding reform enacted April 1, 2014 on wait time for hip fracture repair (from hospital presentation to surgery) and after-hours provision of surgery (occurring between 1700 and 0700 h). To assess potential adverse consequences of the reform, we also evaluated two control procedures, ankle and tibial plateau fracture surgery. Appendectomy served as a non-orthopedic tracer for assessment of secular trends. Results The difference (95 % confidence interval) between the actual mean wait time and the predicted rate had the policy change not occurred was − 0.46 h (-3.94 h, 3.03 h) for hip fractures, 1.46 h (-3.58 h, 6.50 h) for ankle fractures, -3.22 h (-39.39 h, 32.95 h) for tibial plateau fractures, and 0.33 h (-0.57 h, 1.24 h) for appendectomy (Figure 1; Table 3). The difference (95 % confidence interval) between the actual and predicted percentage of surgeries performed after-hours − 0.90 % (-3.91 %, 2.11 %) for hip fractures, -3.54 % (-11.25 %, 4.16 %) for ankle fractures, 7.09 % (-7.97 %, 22.14 %) for tibial plateau fractures, and 1.07 % (-2.45 %, 4.59 %) for appendectomy. Conclusions We found no significant effects of a targeted hospital funding model based on fixed price and volume on wait times or the provision of after-hours surgery. Other approaches for improving hip fracture wait times may be worth pursuing instead of funding reform.


Sign in / Sign up

Export Citation Format

Share Document